Trifocal Relative Pose From Lines at Points
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F23%3A00361847" target="_blank" >RIV/68407700:21730/23:00361847 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TPAMI.2022.3226165" target="_blank" >https://doi.org/10.1109/TPAMI.2022.3226165</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TPAMI.2022.3226165" target="_blank" >10.1109/TPAMI.2022.3226165</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Trifocal Relative Pose From Lines at Points
Popis výsledku v původním jazyce
We present a method for solving two minimal problems for relative camera pose estimation from three views, which are based on three view correspondences of ( i ) three points and one line and the novel case of ( ii ) three points and two lines through two of the points. These problems are too difficult to be efficiently solved by the state of the art Gröbner basis methods. Our method is based on a new efficient homotopy continuation (HC) solver framework MINUS, which dramatically speeds up previous HC solving by specializing HC methods to generic cases of our problems. We characterize their number of solutions and show with simulated experiments that our solvers are numerically robust and stable under image noise, a key contribution given the borderline intractable degree of nonlinearity of trinocular constraints. We show in real experiments that ( i ) SIFT feature location and orientation provide good enough point-and-line correspondences for three-view reconstruction and ( ii ) that we can solve difficult cases with too few or too noisy tentative matches, where the state of the art structure from motion initialization fails.
Název v anglickém jazyce
Trifocal Relative Pose From Lines at Points
Popis výsledku anglicky
We present a method for solving two minimal problems for relative camera pose estimation from three views, which are based on three view correspondences of ( i ) three points and one line and the novel case of ( ii ) three points and two lines through two of the points. These problems are too difficult to be efficiently solved by the state of the art Gröbner basis methods. Our method is based on a new efficient homotopy continuation (HC) solver framework MINUS, which dramatically speeds up previous HC solving by specializing HC methods to generic cases of our problems. We characterize their number of solutions and show with simulated experiments that our solvers are numerically robust and stable under image noise, a key contribution given the borderline intractable degree of nonlinearity of trinocular constraints. We show in real experiments that ( i ) SIFT feature location and orientation provide good enough point-and-line correspondences for three-view reconstruction and ( ii ) that we can solve difficult cases with too few or too noisy tentative matches, where the state of the art structure from motion initialization fails.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Inteligentní strojové vnímání</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Pattern Analysis and Machine Intelligence
ISSN
0162-8828
e-ISSN
1939-3539
Svazek periodika
45
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
7870-7884
Kód UT WoS článku
000982475600083
EID výsledku v databázi Scopus
2-s2.0-85144038314