Online Machine Learning Techniques for Coq: A Comparison
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F21%3A00354419" target="_blank" >RIV/68407700:21730/21:00354419 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-81097-9_5" target="_blank" >https://doi.org/10.1007/978-3-030-81097-9_5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-81097-9_5" target="_blank" >10.1007/978-3-030-81097-9_5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Online Machine Learning Techniques for Coq: A Comparison
Popis výsledku v původním jazyce
We present a comparison of several online machine learning techniques for tactical learning and proving in the Coq proof assistant. This work builds on top of Tactician, a plugin for Coq that learns from proofs written by the user to synthesize new proofs. Learning happens in an online manner, meaning that Tactician’s machine learning model is updated immediately every time the user performs a step in an interactive proof. This has important advantages compared to the more studied offline learning systems: (1) it provides the user with a seamless, interactive experience with Tactician and, (2) it takes advantage of locality of proof similarity, which means that proofs similar to the current proof are likely to be found close by. We implement two online methods, namely approximate k-nearest neighbors based on locality sensitive hashing forests and random decision forests. Additionally, we conduct experiments with gradient boosted trees in an offline setting using XGBoost. We compare the relative performance of Tactician using these three learning methods on Coq’s standard library.
Název v anglickém jazyce
Online Machine Learning Techniques for Coq: A Comparison
Popis výsledku anglicky
We present a comparison of several online machine learning techniques for tactical learning and proving in the Coq proof assistant. This work builds on top of Tactician, a plugin for Coq that learns from proofs written by the user to synthesize new proofs. Learning happens in an online manner, meaning that Tactician’s machine learning model is updated immediately every time the user performs a step in an interactive proof. This has important advantages compared to the more studied offline learning systems: (1) it provides the user with a seamless, interactive experience with Tactician and, (2) it takes advantage of locality of proof similarity, which means that proofs similar to the current proof are likely to be found close by. We implement two online methods, namely approximate k-nearest neighbors based on locality sensitive hashing forests and random decision forests. Additionally, we conduct experiments with gradient boosted trees in an offline setting using XGBoost. We compare the relative performance of Tactician using these three learning methods on Coq’s standard library.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Intelligent Computer Mathematics
ISBN
978-3-030-81096-2
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
17
Strana od-do
67-83
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Timisoara
Datum konání akce
26. 7. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000707054900005