Comparing Planning Domain Models Using Answer Set Programming
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F23%3A00369568" target="_blank" >RIV/68407700:21730/23:00369568 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-031-43619-2_16" target="_blank" >http://dx.doi.org/10.1007/978-3-031-43619-2_16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-43619-2_16" target="_blank" >10.1007/978-3-031-43619-2_16</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparing Planning Domain Models Using Answer Set Programming
Popis výsledku v původním jazyce
Automated planning is a prominent area of Artificial Intelligence, and an important component for intelligent autonomous agents. A critical aspect of domain-independent planning is the domain model, that encodes a formal representation of domain knowledge needed to reason upon a given problem. Despite the crucial role of domain models in automated planning, there is lack of tools supporting knowledge engineering process by comparing different versions of the models, in particular, determining and highlighting differences the models have. In this paper, we build on the notion of strong equivalence of domain models and formalise a novel concept of similarity of domain models. To measure the similarity of two models, we introduce a directed graph representation of lifted domain models that allows to formulate the domain model similarity problem as a variant of the graph edit distance problem. We propose an Answer Set Programming approach to optimally solve the domain model similarity problem, that identifies the minimum number of modifications the models need to become strongly equivalent, and we demonstrate the capabilities of the approach on a range of benchmark models.
Název v anglickém jazyce
Comparing Planning Domain Models Using Answer Set Programming
Popis výsledku anglicky
Automated planning is a prominent area of Artificial Intelligence, and an important component for intelligent autonomous agents. A critical aspect of domain-independent planning is the domain model, that encodes a formal representation of domain knowledge needed to reason upon a given problem. Despite the crucial role of domain models in automated planning, there is lack of tools supporting knowledge engineering process by comparing different versions of the models, in particular, determining and highlighting differences the models have. In this paper, we build on the notion of strong equivalence of domain models and formalise a novel concept of similarity of domain models. To measure the similarity of two models, we introduce a directed graph representation of lifted domain models that allows to formulate the domain model similarity problem as a variant of the graph edit distance problem. We propose an Answer Set Programming approach to optimally solve the domain model similarity problem, that identifies the minimum number of modifications the models need to become strongly equivalent, and we demonstrate the capabilities of the approach on a range of benchmark models.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-05575S" target="_blank" >GA23-05575S: Řízení dopravy v obydlených oblastech pomocí automatického plánování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-031-43618-5
ISSN
2945-9133
e-ISSN
1611-3349
Počet stran výsledku
16
Strana od-do
227-242
Název nakladatele
Springer
Místo vydání
Basel
Místo konání akce
Dresden
Datum konání akce
20. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001157340700016