Graph Neural Networks for Mapping Variables Between Programs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F23%3A00372129" target="_blank" >RIV/68407700:21730/23:00372129 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3233/FAIA230468" target="_blank" >https://doi.org/10.3233/FAIA230468</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/FAIA230468" target="_blank" >10.3233/FAIA230468</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Graph Neural Networks for Mapping Variables Between Programs
Popis výsledku v původním jazyce
Automated program analysis is a pivotal research domain in many areas of Computer Science — Formal Methods and Artificial Intelligence, in particular. Due to the undecidability of the problem of program equivalence, comparing two programs is highly challenging. Typically, in order to compare two programs, a relation between both programs’ sets of variables is required. Thus, mapping variables between two programs is useful for a panoply of tasks such as program equivalence, program analysis, program repair, and clone detection. In this work, we propose using graph neural networks (GNNs) to map the set of variables between two programs based on both programs’ abstract syntax trees (ASTs). To demonstrate the strength of variable mappings, we present three use-cases of these mappings on the task of program repair to fix well-studied and recurrent bugs among novice programmers in introductory programming assignments (IPAs). Experimental results on a dataset of 4166 pairs of incorrect/correct programs show that our approach correctly maps 83% of the evaluation dataset. Moreover, our experiments show that the current state-of-the-art on program repair, greatly dependent on the programs’ structure, can only repair about 72% of the incorrect programs. In contrast, our approach, which is solely based on variable mappings, can repair around 88.5%.
Název v anglickém jazyce
Graph Neural Networks for Mapping Variables Between Programs
Popis výsledku anglicky
Automated program analysis is a pivotal research domain in many areas of Computer Science — Formal Methods and Artificial Intelligence, in particular. Due to the undecidability of the problem of program equivalence, comparing two programs is highly challenging. Typically, in order to compare two programs, a relation between both programs’ sets of variables is required. Thus, mapping variables between two programs is useful for a panoply of tasks such as program equivalence, program analysis, program repair, and clone detection. In this work, we propose using graph neural networks (GNNs) to map the set of variables between two programs based on both programs’ abstract syntax trees (ASTs). To demonstrate the strength of variable mappings, we present three use-cases of these mappings on the task of program repair to fix well-studied and recurrent bugs among novice programmers in introductory programming assignments (IPAs). Experimental results on a dataset of 4166 pairs of incorrect/correct programs show that our approach correctly maps 83% of the evaluation dataset. Moreover, our experiments show that the current state-of-the-art on program repair, greatly dependent on the programs’ structure, can only repair about 72% of the incorrect programs. In contrast, our approach, which is solely based on variable mappings, can repair around 88.5%.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
European Conference on Artificial Intelligence 2023
ISBN
978-1-64368-436-9
ISSN
0922-6389
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1811-1818
Název nakladatele
IOS Press
Místo vydání
Amsterdam
Místo konání akce
Krakov
Datum konání akce
30. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—