Learning Proof Transformations and Its Applications in Interactive Theorem Proving
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F23%3A00372165" target="_blank" >RIV/68407700:21730/23:00372165 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-43369-6_13" target="_blank" >https://doi.org/10.1007/978-3-031-43369-6_13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-43369-6_13" target="_blank" >10.1007/978-3-031-43369-6_13</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Learning Proof Transformations and Its Applications in Interactive Theorem Proving
Popis výsledku v původním jazyce
Interactive theorem provers are today increasingly used to certify mathematical theories. To formally prove a theorem, reasoning procedures called tactics are invoked successively on the proof states starting with the initial theorem statement, transforming them into subsequent intermediate goals, and ultimately discharging all proof obligations. In this work, we develop and experimentally evaluate approaches that predict the most likely tactics that will achieve particular desired transformations of proof states. First, we design several characterizations to efficiently capture the semantics of the proof transformations. Then we use them to create large datasets on which we train state-of-the-art random forests and language models. The trained models are evaluated experimentally, and we show that our best model is able to guess the right tactic for a given proof transformation in 74% of the cases. Finally, we use the trained methods in two applications: proof shortening and tactic suggesting. To the best of our knowledge, this is the first time that tactic synthesis is trained on proof transformations and assists interactive theorem proving in these ways.
Název v anglickém jazyce
Learning Proof Transformations and Its Applications in Interactive Theorem Proving
Popis výsledku anglicky
Interactive theorem provers are today increasingly used to certify mathematical theories. To formally prove a theorem, reasoning procedures called tactics are invoked successively on the proof states starting with the initial theorem statement, transforming them into subsequent intermediate goals, and ultimately discharging all proof obligations. In this work, we develop and experimentally evaluate approaches that predict the most likely tactics that will achieve particular desired transformations of proof states. First, we design several characterizations to efficiently capture the semantics of the proof transformations. Then we use them to create large datasets on which we train state-of-the-art random forests and language models. The trained models are evaluated experimentally, and we show that our best model is able to guess the right tactic for a given proof transformation in 74% of the cases. Finally, we use the trained methods in two applications: proof shortening and tactic suggesting. To the best of our knowledge, this is the first time that tactic synthesis is trained on proof transformations and assists interactive theorem proving in these ways.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Frontiers of Combining Systems
ISBN
978-3-031-43368-9
ISSN
2945-9133
e-ISSN
1611-3349
Počet stran výsledku
19
Strana od-do
236-254
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Praha
Datum konání akce
20. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001156327100013