Interactive learning of physical object properties through robot manipulation and database of object measurements
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F24%3A00376307" target="_blank" >RIV/68407700:21730/24:00376307 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/24:00376307
Výsledek na webu
<a href="https://doi.org/10.1109/IROS58592.2024.10802249" target="_blank" >https://doi.org/10.1109/IROS58592.2024.10802249</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IROS58592.2024.10802249" target="_blank" >10.1109/IROS58592.2024.10802249</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Interactive learning of physical object properties through robot manipulation and database of object measurements
Popis výsledku v původním jazyce
This work presents a framework for automatically extracting physical object properties, such as material compo sition, mass, volume, and stiffness, through robot manipulation and a database of object measurements. The framework in volves exploratory action selection to maximize learning about objects on a table. A Bayesian network models conditional dependencies between object properties, incorporating prior probability distributions and uncertainty associated with mea surement actions. The algorithm selects optimal exploratory actions based on expected information gain and updates object properties through Bayesian inference. Experimental evaluation demonstrates effective action selection compared to a baseline and correct termination of the experiments if there is nothing more to be learned. The algorithm proved to behave intelligently when presented with trick objects with material properties in conflict with their appearance. The robot pipeline integrates with a logging module and an online database of objects, con taining over 24,000 measurements of 63 objects with different grippers. All code and data are publicly available, facilitating automatic digitization of objects and their physical properties through exploratory manipulations.
Název v anglickém jazyce
Interactive learning of physical object properties through robot manipulation and database of object measurements
Popis výsledku anglicky
This work presents a framework for automatically extracting physical object properties, such as material compo sition, mass, volume, and stiffness, through robot manipulation and a database of object measurements. The framework in volves exploratory action selection to maximize learning about objects on a table. A Bayesian network models conditional dependencies between object properties, incorporating prior probability distributions and uncertainty associated with mea surement actions. The algorithm selects optimal exploratory actions based on expected information gain and updates object properties through Bayesian inference. Experimental evaluation demonstrates effective action selection compared to a baseline and correct termination of the experiments if there is nothing more to be learned. The algorithm proved to behave intelligently when presented with trick objects with material properties in conflict with their appearance. The robot pipeline integrates with a logging module and an online database of objects, con taining over 24,000 measurements of 63 objects with different grippers. All code and data are publicly available, facilitating automatic digitization of objects and their physical properties through exploratory manipulations.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024)
ISBN
979-8-3503-7770-5
ISSN
2153-0858
e-ISSN
2153-0866
Počet stran výsledku
8
Strana od-do
7596-7603
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Abu Dhabi
Datum konání akce
14. 10. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001433985300013