Recognizing object surface material from impact sounds for robot manipulation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00358716" target="_blank" >RIV/68407700:21230/22:00358716 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/IROS47612.2022.9981578" target="_blank" >https://doi.org/10.1109/IROS47612.2022.9981578</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IROS47612.2022.9981578" target="_blank" >10.1109/IROS47612.2022.9981578</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Recognizing object surface material from impact sounds for robot manipulation
Popis výsledku v původním jazyce
We investigated the use of impact sounds generated during exploratory behaviors in a robotic manipulation setup as cues for predicting object surface material and for recognizing individual objects. We collected and make available the YCB-impact sounds dataset which includes over 3,500 impact sounds for the YCB set of everyday objects lying on a table. Impact sounds were generated in three modes: (i) human holding a gripper and hitting, scratching, or dropping the object; (ii) gripper attached to a teleoperated robot hitting the object from the top; (iii) autonomously operated robot hitting the objects from the side with two different speeds. A convolutional neural network (ResNet34) is trained from scratch to recognize the object material (steel, aluminium, hard plastic, soft plastic, other plastic, ceramic, wood, paper/cardboard, foam, glass, rubber) from a single impact sound. On the manually collected dataset with more variability in the action, nearly 60% accuracy for the test set (unseen objects) was achieved. On a robot setup and a stereotypical poking action from top, accuracy of 85% was achieved. This performance drops to 79% if multiple exploratory actions are combined. Individual objects from the set of 75 objects can be recognized with a 79% accuracy. This work demonstrates promising results regarding the possibility of using sound for recognition in tasks like single-stream recycling where objects have to be sorted based on their material composition.
Název v anglickém jazyce
Recognizing object surface material from impact sounds for robot manipulation
Popis výsledku anglicky
We investigated the use of impact sounds generated during exploratory behaviors in a robotic manipulation setup as cues for predicting object surface material and for recognizing individual objects. We collected and make available the YCB-impact sounds dataset which includes over 3,500 impact sounds for the YCB set of everyday objects lying on a table. Impact sounds were generated in three modes: (i) human holding a gripper and hitting, scratching, or dropping the object; (ii) gripper attached to a teleoperated robot hitting the object from the top; (iii) autonomously operated robot hitting the objects from the side with two different speeds. A convolutional neural network (ResNet34) is trained from scratch to recognize the object material (steel, aluminium, hard plastic, soft plastic, other plastic, ceramic, wood, paper/cardboard, foam, glass, rubber) from a single impact sound. On the manually collected dataset with more variability in the action, nearly 60% accuracy for the test set (unseen objects) was achieved. On a robot setup and a stereotypical poking action from top, accuracy of 85% was achieved. This performance drops to 79% if multiple exploratory actions are combined. Individual objects from the set of 75 objects can be recognized with a 79% accuracy. This work demonstrates promising results regarding the possibility of using sound for recognition in tasks like single-stream recycling where objects have to be sorted based on their material composition.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Intelligent Robots and Systems (IROS), 2022 IEEE/RSJ International Conference on
ISBN
978-1-6654-7927-1
ISSN
2153-0866
e-ISSN
2153-0858
Počet stran výsledku
8
Strana od-do
9280-9287
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Kyoto
Datum konání akce
23. 10. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000909405301116