GJK++: Leveraging Acceleration Methods for Faster Collision Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F24%3A00376350" target="_blank" >RIV/68407700:21730/24:00376350 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TRO.2024.3386370" target="_blank" >https://doi.org/10.1109/TRO.2024.3386370</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TRO.2024.3386370" target="_blank" >10.1109/TRO.2024.3386370</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
GJK++: Leveraging Acceleration Methods for Faster Collision Detection
Popis výsledku v původním jazyce
Collision detection is a fundamental problem in various domains, such as robotics, computational physics, and computer graphics. In general, collision detection is tackled as a computational geometry problem, with the so-called Gilbert, Johnson, and Keerthi (GJK) algorithm being the most adopted solution nowadays. While introduced in 1988, GJK remains the most effective solution to compute the distance or the collision between two 3-D convex geometries. Over the years, it was shown to be efficient, scalable, and generic, operating on a broad class of convex shapes, ranging from simple primitives (sphere, ellipsoid, box, cone, capsule, etc.) to complex meshes involving thousands of vertices. In this article, we introduce several contributions to accelerate collision detection and distance computation between convex geometries by leveraging the fact that these two problems are fundamentally optimization problems. Notably, we establish that the GJK algorithm is a specific subcase of the well-established Frank–Wolfe (FW) algorithm in convex optimization. By adapting recent works linking Polyak and Nesterov accelerations to FW methods, we also propose two accelerated extensions of the classic GJK algorithm. Through an extensive benchmark over millions of collision pairs involving objects of daily life, we show that these two accelerated GJK extensions significantly reduce the overall computational burden of collision detection, leading to computation times that are up to two times faster. Finally, we hope this work will significantly reduce the computational cost of modern robotic simulators, allowing the speedup of modern robotic applications that heavily rely on simulation, such as reinforcement learning or trajectory optimization.
Název v anglickém jazyce
GJK++: Leveraging Acceleration Methods for Faster Collision Detection
Popis výsledku anglicky
Collision detection is a fundamental problem in various domains, such as robotics, computational physics, and computer graphics. In general, collision detection is tackled as a computational geometry problem, with the so-called Gilbert, Johnson, and Keerthi (GJK) algorithm being the most adopted solution nowadays. While introduced in 1988, GJK remains the most effective solution to compute the distance or the collision between two 3-D convex geometries. Over the years, it was shown to be efficient, scalable, and generic, operating on a broad class of convex shapes, ranging from simple primitives (sphere, ellipsoid, box, cone, capsule, etc.) to complex meshes involving thousands of vertices. In this article, we introduce several contributions to accelerate collision detection and distance computation between convex geometries by leveraging the fact that these two problems are fundamentally optimization problems. Notably, we establish that the GJK algorithm is a specific subcase of the well-established Frank–Wolfe (FW) algorithm in convex optimization. By adapting recent works linking Polyak and Nesterov accelerations to FW methods, we also propose two accelerated extensions of the classic GJK algorithm. Through an extensive benchmark over millions of collision pairs involving objects of daily life, we show that these two accelerated GJK extensions significantly reduce the overall computational burden of collision detection, leading to computation times that are up to two times faster. Finally, we hope this work will significantly reduce the computational cost of modern robotic simulators, allowing the speedup of modern robotic applications that heavily rely on simulation, such as reinforcement learning or trajectory optimization.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Inteligentní strojové vnímání</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Robotics
ISSN
1552-3098
e-ISSN
1941-0468
Svazek periodika
40
Číslo periodika v rámci svazku
April
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
2564-2581
Kód UT WoS článku
001214506500002
EID výsledku v databázi Scopus
2-s2.0-85190173290