Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

GJK++: Leveraging Acceleration Methods for Faster Collision Detection

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F24%3A00376350" target="_blank" >RIV/68407700:21730/24:00376350 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/TRO.2024.3386370" target="_blank" >https://doi.org/10.1109/TRO.2024.3386370</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TRO.2024.3386370" target="_blank" >10.1109/TRO.2024.3386370</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    GJK++: Leveraging Acceleration Methods for Faster Collision Detection

  • Popis výsledku v původním jazyce

    Collision detection is a fundamental problem in various domains, such as robotics, computational physics, and computer graphics. In general, collision detection is tackled as a computational geometry problem, with the so-called Gilbert, Johnson, and Keerthi (GJK) algorithm being the most adopted solution nowadays. While introduced in 1988, GJK remains the most effective solution to compute the distance or the collision between two 3-D convex geometries. Over the years, it was shown to be efficient, scalable, and generic, operating on a broad class of convex shapes, ranging from simple primitives (sphere, ellipsoid, box, cone, capsule, etc.) to complex meshes involving thousands of vertices. In this article, we introduce several contributions to accelerate collision detection and distance computation between convex geometries by leveraging the fact that these two problems are fundamentally optimization problems. Notably, we establish that the GJK algorithm is a specific subcase of the well-established Frank–Wolfe (FW) algorithm in convex optimization. By adapting recent works linking Polyak and Nesterov accelerations to FW methods, we also propose two accelerated extensions of the classic GJK algorithm. Through an extensive benchmark over millions of collision pairs involving objects of daily life, we show that these two accelerated GJK extensions significantly reduce the overall computational burden of collision detection, leading to computation times that are up to two times faster. Finally, we hope this work will significantly reduce the computational cost of modern robotic simulators, allowing the speedup of modern robotic applications that heavily rely on simulation, such as reinforcement learning or trajectory optimization.

  • Název v anglickém jazyce

    GJK++: Leveraging Acceleration Methods for Faster Collision Detection

  • Popis výsledku anglicky

    Collision detection is a fundamental problem in various domains, such as robotics, computational physics, and computer graphics. In general, collision detection is tackled as a computational geometry problem, with the so-called Gilbert, Johnson, and Keerthi (GJK) algorithm being the most adopted solution nowadays. While introduced in 1988, GJK remains the most effective solution to compute the distance or the collision between two 3-D convex geometries. Over the years, it was shown to be efficient, scalable, and generic, operating on a broad class of convex shapes, ranging from simple primitives (sphere, ellipsoid, box, cone, capsule, etc.) to complex meshes involving thousands of vertices. In this article, we introduce several contributions to accelerate collision detection and distance computation between convex geometries by leveraging the fact that these two problems are fundamentally optimization problems. Notably, we establish that the GJK algorithm is a specific subcase of the well-established Frank–Wolfe (FW) algorithm in convex optimization. By adapting recent works linking Polyak and Nesterov accelerations to FW methods, we also propose two accelerated extensions of the classic GJK algorithm. Through an extensive benchmark over millions of collision pairs involving objects of daily life, we show that these two accelerated GJK extensions significantly reduce the overall computational burden of collision detection, leading to computation times that are up to two times faster. Finally, we hope this work will significantly reduce the computational cost of modern robotic simulators, allowing the speedup of modern robotic applications that heavily rely on simulation, such as reinforcement learning or trajectory optimization.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Inteligentní strojové vnímání</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Robotics

  • ISSN

    1552-3098

  • e-ISSN

    1941-0468

  • Svazek periodika

    40

  • Číslo periodika v rámci svazku

    April

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    18

  • Strana od-do

    2564-2581

  • Kód UT WoS článku

    001214506500002

  • EID výsledku v databázi Scopus

    2-s2.0-85190173290