Modification of Infinite and Unstable Invariant Zeros in Linear Systems Using Stability-Preserving State Feedback
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F24%3A00377633" target="_blank" >RIV/68407700:21730/24:00377633 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TAC.2024.3394129" target="_blank" >https://doi.org/10.1109/TAC.2024.3394129</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TAC.2024.3394129" target="_blank" >10.1109/TAC.2024.3394129</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modification of Infinite and Unstable Invariant Zeros in Linear Systems Using Stability-Preserving State Feedback
Popis výsledku v původním jazyce
The algebra of integral matrices is applied to solve the following problem of control theory: modification of a specified list of zeros of a linear system with more inputs than outputs using nonregular state feedback while ensuring stability or, equivalently, the modification of a specified list of zeros of a stable system while maintaining stability. The zeros in question are unstable invariant zeros and the zero at infinity. These zeros are the Smith invariant of the transfer matrix of the given stable system, which is a proper and stable rational matrix. Since the action of any stability-preserving state feedback can be represented by the multiplication of the system transfer matrix on the right by a proper and stable rational matrix, called a cascade compensator, the study of the control problem amounts to the study of Smith invariants of a product of two integral matrices. However, only cascade compensators that can be implemented using state feedback are of interest. This is why the solvability conditions depend on the system's column-minimal indices. It turns out that existing infinite and unstable invariant zeros cannot be displaced; only their multiplicity can be increased, and new zeros can be created. Typical applications include stable model matching and stable decoupling by state feedback.
Název v anglickém jazyce
Modification of Infinite and Unstable Invariant Zeros in Linear Systems Using Stability-Preserving State Feedback
Popis výsledku anglicky
The algebra of integral matrices is applied to solve the following problem of control theory: modification of a specified list of zeros of a linear system with more inputs than outputs using nonregular state feedback while ensuring stability or, equivalently, the modification of a specified list of zeros of a stable system while maintaining stability. The zeros in question are unstable invariant zeros and the zero at infinity. These zeros are the Smith invariant of the transfer matrix of the given stable system, which is a proper and stable rational matrix. Since the action of any stability-preserving state feedback can be represented by the multiplication of the system transfer matrix on the right by a proper and stable rational matrix, called a cascade compensator, the study of the control problem amounts to the study of Smith invariants of a product of two integral matrices. However, only cascade compensators that can be implemented using state feedback are of interest. This is why the solvability conditions depend on the system's column-minimal indices. It turns out that existing infinite and unstable invariant zeros cannot be displaced; only their multiplicity can be increased, and new zeros can be created. Typical applications include stable model matching and stable decoupling by state feedback.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EH22_008%2F0004590" target="_blank" >EH22_008/0004590: Robotika a pokročilá průmyslová výroba</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Automatic Control
ISSN
0018-9286
e-ISSN
1558-2523
Svazek periodika
69
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
7166-7173
Kód UT WoS článku
001322635200030
EID výsledku v databázi Scopus
2-s2.0-85192138972