Graph2Tac: Online Representation Learning of Formal Math Concepts
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F24%3A00381582" target="_blank" >RIV/68407700:21730/24:00381582 - isvavai.cz</a>
Výsledek na webu
<a href="https://openreview.net/pdf?id=A7CtiozznN" target="_blank" >https://openreview.net/pdf?id=A7CtiozznN</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Graph2Tac: Online Representation Learning of Formal Math Concepts
Popis výsledku v původním jazyce
In proof assistants, the physical proximity be tween two formal mathematical concepts is a strong predictor of their mutual relevance. Fur thermore, lemmas with close proximity regularly exhibit similar proof structures. We show that this locality property can be exploited through on line learning techniques to obtain solving agents that far surpass offline learners when asked to prove theorems in an unseen mathematical setting. We extensively benchmark two such online solvers implemented in the Tactician platform for the Coq proof assistant: First, Tactician’s online k-nearest neighbor solver, which can learn from recent proofs, shows a 172 improvement in theorems proved over an offline equivalent. Second, we introduce a graph neural network, Graph2Tac, with a novel approach to build hierarchical representations for new definitions. Graph2Tac’s online definition task realizes a 15 improvement in theorems solved over an offline baseline. The k-NN and Graph2Tac solvers rely on orthogonal online data, making them highly complementary. Their combination improves 127 over their individual performances. Both solvers outperform all other general-purpose provers for Coq, including CoqHammer, Proverbot9001, and a transformer baseline by at least 148 and are available for practical use by end-users.
Název v anglickém jazyce
Graph2Tac: Online Representation Learning of Formal Math Concepts
Popis výsledku anglicky
In proof assistants, the physical proximity be tween two formal mathematical concepts is a strong predictor of their mutual relevance. Fur thermore, lemmas with close proximity regularly exhibit similar proof structures. We show that this locality property can be exploited through on line learning techniques to obtain solving agents that far surpass offline learners when asked to prove theorems in an unseen mathematical setting. We extensively benchmark two such online solvers implemented in the Tactician platform for the Coq proof assistant: First, Tactician’s online k-nearest neighbor solver, which can learn from recent proofs, shows a 172 improvement in theorems proved over an offline equivalent. Second, we introduce a graph neural network, Graph2Tac, with a novel approach to build hierarchical representations for new definitions. Graph2Tac’s online definition task realizes a 15 improvement in theorems solved over an offline baseline. The k-NN and Graph2Tac solvers rely on orthogonal online data, making them highly complementary. Their combination improves 127 over their individual performances. Both solvers outperform all other general-purpose provers for Coq, including CoqHammer, Proverbot9001, and a transformer baseline by at least 148 and are available for practical use by end-users.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of Machine Learning Research
ISBN
—
ISSN
2640-3498
e-ISSN
2640-3498
Počet stran výsledku
31
Strana od-do
4046-4076
Název nakladatele
Proceedings of Machine Learning Research
Místo vydání
—
Místo konání akce
Vienna
Datum konání akce
21. 7. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001347135504008