Solving the issue of discriminant roughness of heterogeneous surfaces using elements of artificial intelligence
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F21%3A63536818" target="_blank" >RIV/70883521:28110/21:63536818 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1996-1944/14/10/2620" target="_blank" >https://www.mdpi.com/1996-1944/14/10/2620</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ma14102620" target="_blank" >10.3390/ma14102620</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Solving the issue of discriminant roughness of heterogeneous surfaces using elements of artificial intelligence
Popis výsledku v původním jazyce
This work deals with investigative methods used for evaluation of the surface quality of selected metallic materials’ cutting plane that was created by CO2 and fiber laser machining. The surface quality expressed by Rz and Ra roughness parameters is examined depending on the sample material and the machining technology. The next part deals with the use of neural networks in the evaluation of measured data. In the last part, the measured data were statistically evaluated. Based on the conclusions of this analysis, the possibilities of using neural networks to determine the material of a given sample while knowing the roughness parameters were evaluated. The main goal of the presented paper is to demonstrate a solution capable of finding characteristic roughness values for heterogeneous surfaces. These surfaces are common in scientific as well as technical practice, and measuring their quality is challenging. This difficulty lies mainly in the fact that it is not possible to express their quality by a single statistical parameter. Thus, this paper's main aim is to demonstrate solutions using the cluster analysis methods and the hidden layer, solving the problem of discriminant and dividing the heterogeneous surface into individual zones that have characteristic parameters.
Název v anglickém jazyce
Solving the issue of discriminant roughness of heterogeneous surfaces using elements of artificial intelligence
Popis výsledku anglicky
This work deals with investigative methods used for evaluation of the surface quality of selected metallic materials’ cutting plane that was created by CO2 and fiber laser machining. The surface quality expressed by Rz and Ra roughness parameters is examined depending on the sample material and the machining technology. The next part deals with the use of neural networks in the evaluation of measured data. In the last part, the measured data were statistically evaluated. Based on the conclusions of this analysis, the possibilities of using neural networks to determine the material of a given sample while knowing the roughness parameters were evaluated. The main goal of the presented paper is to demonstrate a solution capable of finding characteristic roughness values for heterogeneous surfaces. These surfaces are common in scientific as well as technical practice, and measuring their quality is challenging. This difficulty lies mainly in the fact that it is not possible to express their quality by a single statistical parameter. Thus, this paper's main aim is to demonstrate solutions using the cluster analysis methods and the hidden layer, solving the problem of discriminant and dividing the heterogeneous surface into individual zones that have characteristic parameters.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials
ISSN
1996-1944
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
—
Kód UT WoS článku
000662586900001
EID výsledku v databázi Scopus
2-s2.0-85106716945