Metrological evaluation of heterogeneous surfaces obtained by water jet cutting technology using artificial intelligence elements
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F22%3A63559238" target="_blank" >RIV/70883521:28110/22:63559238 - isvavai.cz</a>
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1742-6596/2413/1/012003" target="_blank" >https://iopscience.iop.org/article/10.1088/1742-6596/2413/1/012003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1742-6596/2413/1/012003" target="_blank" >10.1088/1742-6596/2413/1/012003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Metrological evaluation of heterogeneous surfaces obtained by water jet cutting technology using artificial intelligence elements
Popis výsledku v původním jazyce
This paper deals with the design and construction of a neural network for predicting the results of roughness parameters for heterogeneous surfaces. At the same time, it demonstrates that other statistical methods, especially regression analysis, fail in this respect, and their results cannot be used reliably. The samples produced using waterjet cutting were used to obtain the necessary data for constructing the neural network. Its heterogeneity characterizes this surface. This paper describes these samples, the parameters of their creation, the laboratory measurements, the complete construction of the neural network and the subsequent comparison of the results with regression functions. This paper aims to design a functional neural network that will best describe the roughness pattern of the surface under study. This neural network will predict this waveform based on the input variables and prove that this advanced statistical method completely exceeds the capabilities and predictive value of conventional regression analyses. © Published under licence by IOP Publishing Ltd.
Název v anglickém jazyce
Metrological evaluation of heterogeneous surfaces obtained by water jet cutting technology using artificial intelligence elements
Popis výsledku anglicky
This paper deals with the design and construction of a neural network for predicting the results of roughness parameters for heterogeneous surfaces. At the same time, it demonstrates that other statistical methods, especially regression analysis, fail in this respect, and their results cannot be used reliably. The samples produced using waterjet cutting were used to obtain the necessary data for constructing the neural network. Its heterogeneity characterizes this surface. This paper describes these samples, the parameters of their creation, the laboratory measurements, the complete construction of the neural network and the subsequent comparison of the results with regression functions. This paper aims to design a functional neural network that will best describe the roughness pattern of the surface under study. This neural network will predict this waveform based on the input variables and prove that this advanced statistical method completely exceeds the capabilities and predictive value of conventional regression analyses. © Published under licence by IOP Publishing Ltd.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Journal of Physics: Conference Series
ISBN
—
ISSN
1742-6588
e-ISSN
1742-6596
Počet stran výsledku
9
Strana od-do
—
Název nakladatele
Institute of Physics Publishing Ltd.
Místo vydání
Bristol
Místo konání akce
Nová Lesná
Datum konání akce
5. 9. 2022
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—