Mechanical strain and electric-field modulation of graphene transistors integrated on MEMS cantilevers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F22%3A63548719" target="_blank" >RIV/70883521:28110/22:63548719 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26620/22:PU142766
Výsledek na webu
<a href="https://link.springer.com/article/10.1007%2Fs10853-021-06846-6" target="_blank" >https://link.springer.com/article/10.1007%2Fs10853-021-06846-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10853-021-06846-6" target="_blank" >10.1007/s10853-021-06846-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mechanical strain and electric-field modulation of graphene transistors integrated on MEMS cantilevers
Popis výsledku v původním jazyce
This work proposes a structure which allows characterization of graphene monolayers under combined electric field and mechanical strain modulation. Our approach is based on a cantilever integrated into a two-dimensional graphene-based Field effect transistor (FET). This allows us to change graphene properties either separately or together via two methods. The first way involves electric field induced by the gate. The second is induction of mechanical strain caused by external force pushing the cantilever up or down. We fabricated devices using silicon-on-insulator wafer with practically zero value of residual stress and a high-quality dielectric layer which allowed us to precisely characterize structures using both mentioned stimuli. We used the electric field/strain interplay to control resistivity and position of the charge neutrality point often described as the Dirac point of graphene. Furthermore, values of mechanical stress can be obtained during the preparation of thin films, which enables the cantilever to bend after the structure is released. Our device demonstrates a novel method of tuning the physical properties of graphene in silicon and/or complementary metal-oxide-semiconductor technology and is thus promising for tunable physical or chemical sensors.
Název v anglickém jazyce
Mechanical strain and electric-field modulation of graphene transistors integrated on MEMS cantilevers
Popis výsledku anglicky
This work proposes a structure which allows characterization of graphene monolayers under combined electric field and mechanical strain modulation. Our approach is based on a cantilever integrated into a two-dimensional graphene-based Field effect transistor (FET). This allows us to change graphene properties either separately or together via two methods. The first way involves electric field induced by the gate. The second is induction of mechanical strain caused by external force pushing the cantilever up or down. We fabricated devices using silicon-on-insulator wafer with practically zero value of residual stress and a high-quality dielectric layer which allowed us to precisely characterize structures using both mentioned stimuli. We used the electric field/strain interplay to control resistivity and position of the charge neutrality point often described as the Dirac point of graphene. Furthermore, values of mechanical stress can be obtained during the preparation of thin films, which enables the cantilever to bend after the structure is released. Our device demonstrates a novel method of tuning the physical properties of graphene in silicon and/or complementary metal-oxide-semiconductor technology and is thus promising for tunable physical or chemical sensors.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Materials Science
ISSN
0022-2461
e-ISSN
—
Svazek periodika
57
Číslo periodika v rámci svazku
Neuveden
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
"1923–1935"
Kód UT WoS článku
000739772900001
EID výsledku v databázi Scopus
2-s2.0-85122377631