Consumer insight on driverless automobile technology adoption via twitter data: A sentiment analytic approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28120%2F20%3A63526218" target="_blank" >RIV/70883521:28120/20:63526218 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/70883521:28140/20:63526218
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-64849-7_41" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-64849-7_41</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-64849-7_41" target="_blank" >10.1007/978-3-030-64849-7_41</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Consumer insight on driverless automobile technology adoption via twitter data: A sentiment analytic approach
Popis výsledku v původním jazyce
Technology has sped up the innovation effort in the automobile industry. Further to this automobile innovation such as intelligent climate control, adaptive cruise control, and others, we find in today’s vehicles, it has been predicted that by 2030, there will be driverless vehicles, of which samples are already on the market. The news and the sights of these so-called driverless vehicles have generated mixed reactions, and this motivated our study. Hence the present study focuses on a dataset of tweets associated with driverless vehicles downloaded using the Twitter API. Valence Aware Dictionary and sentiment Reasoner (VADER), a lexicon and rule-based sentiment analysis tool were used in extracting sentiments on the tweets to gauge public opinions about the acceptance and adoption of the driverless vehicles ahead of their launch. The VADER sentiment analysis results, however, show that the general discussion on driverless vehicles was positive. Besides, we generated a word cloud to visually analyze the terms in the dataset to gain further insights and understand the messages conveyed by the tweets in other to enhance the usage and adoption of driverless vehicles. This study will enable self-driving vehicle technology service providers and autonomous vehicle manufacturers to gain more insights on how to transform the transportation sector by investing in research and technology. © 2020, IFIP International Federation for Information Processing.
Název v anglickém jazyce
Consumer insight on driverless automobile technology adoption via twitter data: A sentiment analytic approach
Popis výsledku anglicky
Technology has sped up the innovation effort in the automobile industry. Further to this automobile innovation such as intelligent climate control, adaptive cruise control, and others, we find in today’s vehicles, it has been predicted that by 2030, there will be driverless vehicles, of which samples are already on the market. The news and the sights of these so-called driverless vehicles have generated mixed reactions, and this motivated our study. Hence the present study focuses on a dataset of tweets associated with driverless vehicles downloaded using the Twitter API. Valence Aware Dictionary and sentiment Reasoner (VADER), a lexicon and rule-based sentiment analysis tool were used in extracting sentiments on the tweets to gauge public opinions about the acceptance and adoption of the driverless vehicles ahead of their launch. The VADER sentiment analysis results, however, show that the general discussion on driverless vehicles was positive. Besides, we generated a word cloud to visually analyze the terms in the dataset to gain further insights and understand the messages conveyed by the tweets in other to enhance the usage and adoption of driverless vehicles. This study will enable self-driving vehicle technology service providers and autonomous vehicle manufacturers to gain more insights on how to transform the transportation sector by investing in research and technology. © 2020, IFIP International Federation for Information Processing.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50204 - Business and management
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Re-imagining Diffusion and Adoption of Information Technology and Systems: A Continuing Conversation
ISBN
978-3-030-64860-2
ISSN
—
e-ISSN
—
Počet stran výsledku
11
Strana od-do
463-473
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Tiruchirappalli
Datum konání akce
17. 12. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—