Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Self-tuning Predictive Control of Nonlinear Servo-motor

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F10%3A63508985" target="_blank" >RIV/70883521:28140/10:63508985 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Self-tuning Predictive Control of Nonlinear Servo-motor

  • Popis výsledku v původním jazyce

    The paper is focused on a design of a self-tuning predictive model control (STMPC) algorithm and its application to a control of a laboratory servo ? motor. The model predictive control algorithm considers constraints of a manipulated variable. An ARX model is used in the identification part of the self-tuning controller and its parameters are recursively estimated using the recursive least squares method with the directional forgetting. The control algorithm is based on the Generalised Predictive Control (GPC) method and the optimization was realized by minimization of a quadratic and absolute values objective functions. A recursive control algorithm was designed for computation of individual predictions by incorporating a receding horizon principle.Proposed predictive controllers were verified by a real-time control of highly nonlinear laboratory model ? Amira DR300.

  • Název v anglickém jazyce

    Self-tuning Predictive Control of Nonlinear Servo-motor

  • Popis výsledku anglicky

    The paper is focused on a design of a self-tuning predictive model control (STMPC) algorithm and its application to a control of a laboratory servo ? motor. The model predictive control algorithm considers constraints of a manipulated variable. An ARX model is used in the identification part of the self-tuning controller and its parameters are recursively estimated using the recursive least squares method with the directional forgetting. The control algorithm is based on the Generalised Predictive Control (GPC) method and the optimization was realized by minimization of a quadratic and absolute values objective functions. A recursive control algorithm was designed for computation of individual predictions by incorporating a receding horizon principle.Proposed predictive controllers were verified by a real-time control of highly nonlinear laboratory model ? Amira DR300.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BC - Teorie a systémy řízení

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/1M0567" target="_blank" >1M0567: Centrum aplikované kybernetiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Electrical Engineering

  • ISSN

    1335-3632

  • e-ISSN

  • Svazek periodika

    61

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    SK - Slovenská republika

  • Počet stran výsledku

    8

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus