Modelling and Identification of a Servo-mechanism using a Neural Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F10%3A63509037" target="_blank" >RIV/70883521:28140/10:63509037 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modelling and Identification of a Servo-mechanism using a Neural Network
Popis výsledku v původním jazyce
The subject of this contribution is the use of neural networks for modeling and identification of processes. In the paper, a feedforward neural network is used. One of the advantages is that the resultant model depends on the setting of neural network weights. In the contribution, the Backpropagation algorithm was employed for this setting. Network topology plays also an important role and depends on the solved problem. Purpose of this paper is to propose a suitable topology of a neural network for a particular process and to compare the neural network model with real laboratory equipment as well. The Amira DR300 system depicted in the figure below was chosen as the laboratory model. It is a servo-mechanism which consists of a permanently excited DC-motor and a tacho-generator with the incremental encoder as a sensor of output signal. Input-output data were measured on this model and were further used for the neural network learning. Consequently the neural network describes the system
Název v anglickém jazyce
Modelling and Identification of a Servo-mechanism using a Neural Network
Popis výsledku anglicky
The subject of this contribution is the use of neural networks for modeling and identification of processes. In the paper, a feedforward neural network is used. One of the advantages is that the resultant model depends on the setting of neural network weights. In the contribution, the Backpropagation algorithm was employed for this setting. Network topology plays also an important role and depends on the solved problem. Purpose of this paper is to propose a suitable topology of a neural network for a particular process and to compare the neural network model with real laboratory equipment as well. The Amira DR300 system depicted in the figure below was chosen as the laboratory model. It is a servo-mechanism which consists of a permanently excited DC-motor and a tacho-generator with the incremental encoder as a sensor of output signal. Input-output data were measured on this model and were further used for the neural network learning. Consequently the neural network describes the system
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BC - Teorie a systémy řízení
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of XXXVth. Seminary ASR10 Instruments and Control
ISBN
978-80-248-2191-7
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
—
Název nakladatele
VŠB-Technická univerzita Ostrava
Místo vydání
Ostrava
Místo konání akce
Ostrava
Datum konání akce
1. 1. 2010
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—