Towards Human Cell Simulation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F19%3A63522820" target="_blank" >RIV/70883521:28140/19:63522820 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/content/pdf/10.1007%2F978-3-030-16272-6_8.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2F978-3-030-16272-6_8.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-16272-6_8" target="_blank" >10.1007/978-3-030-16272-6_8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards Human Cell Simulation
Popis výsledku v původním jazyce
The faithful reproduction and accurate prediction of the phe-notypes and emergent behaviors of complex cellular systems are among the most challenging goals in Systems Biology. Although mathematical models that describe the interactions among all biochemical processes in a cell are theoretically feasible, their simulation is generally hard because of a variety of reasons. For instance, many quantitative data (e.g., kinetic rates) are usually not available, a problem that hinders the execution of simulation algorithms as long as some parameter estimation methods are used. Though, even with a candidate parameterization, the simulation of mechanistic models could be challenging due to the extreme computational effort required. In this context, model reduction techniques and High-Performance Computing infrastructures could be leveraged to mitigate these issues. In addition, as cellular processes are characterized by multiple scales of temporal and spatial organization, novel hybrid simulators able to harmonize different modeling approaches (e.g., logic-based, constraint-based, continuous deterministic, discrete stochastic, spatial) should be designed. This chapter describes a putative unified approach to tackle these challenging tasks, hopefully paving the way to the definition of large-scale comprehensive models that aim at the comprehension of the cell behavior by means of computational tools.
Název v anglickém jazyce
Towards Human Cell Simulation
Popis výsledku anglicky
The faithful reproduction and accurate prediction of the phe-notypes and emergent behaviors of complex cellular systems are among the most challenging goals in Systems Biology. Although mathematical models that describe the interactions among all biochemical processes in a cell are theoretically feasible, their simulation is generally hard because of a variety of reasons. For instance, many quantitative data (e.g., kinetic rates) are usually not available, a problem that hinders the execution of simulation algorithms as long as some parameter estimation methods are used. Though, even with a candidate parameterization, the simulation of mechanistic models could be challenging due to the extreme computational effort required. In this context, model reduction techniques and High-Performance Computing infrastructures could be leveraged to mitigate these issues. In addition, as cellular processes are characterized by multiple scales of temporal and spatial organization, novel hybrid simulators able to harmonize different modeling approaches (e.g., logic-based, constraint-based, continuous deterministic, discrete stochastic, spatial) should be designed. This chapter describes a putative unified approach to tackle these challenging tasks, hopefully paving the way to the definition of large-scale comprehensive models that aim at the comprehension of the cell behavior by means of computational tools.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
High-Performance Modelling and Simulation for Big Data Applications
ISBN
978-3-030-16271-9
Počet stran výsledku
29
Strana od-do
221-249
Počet stran knihy
352
Název nakladatele
Springer
Místo vydání
Cham
Kód UT WoS kapitoly
—