Efficient image retrieval by fuzzy rules from boosting and metaheuristic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F20%3A63525241" target="_blank" >RIV/70883521:28140/20:63525241 - isvavai.cz</a>
Výsledek na webu
<a href="https://content.sciendo.com/configurable/contentpage/journals$002fjaiscr$002f10$002f1$002farticle-p57.xml" target="_blank" >https://content.sciendo.com/configurable/contentpage/journals$002fjaiscr$002f10$002f1$002farticle-p57.xml</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/jaiscr-2020-0005" target="_blank" >10.2478/jaiscr-2020-0005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient image retrieval by fuzzy rules from boosting and metaheuristic
Popis výsledku v původním jazyce
Fast content-based image retrieval is still a challenge for computer systems. We present a novel method aimed at classifying images by fuzzy rules and local image features. The fuzzy rule base is generated in the first stage by a boosting procedure. Boosting meta-learning is used to find the most representative local features. We briefly explore the utilization of metaheuristic algorithms for the various tasks of fuzzy systems optimization. We also provide a comprehensive description of the current best-performing DISH algorithm, which represents a powerful version of the differential evolution algorithm with effective embedded mechanisms for stronger exploration and preservation of the population diversity, designed for higher dimensional and complex optimization tasks. The algorithm is used to fine-tune the fuzzy rule base. The fuzzy rules can also be used to create a database index to retrieve images similar to the query image fast. The proposed approach is tested on a state-of-the-art image dataset and compared with the bag-of-features image representation model combined with the Support Vector Machine classification. The novel method gives a better classification accuracy, and the time of the training and testing process is significantly shorter.
Název v anglickém jazyce
Efficient image retrieval by fuzzy rules from boosting and metaheuristic
Popis výsledku anglicky
Fast content-based image retrieval is still a challenge for computer systems. We present a novel method aimed at classifying images by fuzzy rules and local image features. The fuzzy rule base is generated in the first stage by a boosting procedure. Boosting meta-learning is used to find the most representative local features. We briefly explore the utilization of metaheuristic algorithms for the various tasks of fuzzy systems optimization. We also provide a comprehensive description of the current best-performing DISH algorithm, which represents a powerful version of the differential evolution algorithm with effective embedded mechanisms for stronger exploration and preservation of the population diversity, designed for higher dimensional and complex optimization tasks. The algorithm is used to fine-tune the fuzzy rule base. The fuzzy rules can also be used to create a database index to retrieve images similar to the query image fast. The proposed approach is tested on a state-of-the-art image dataset and compared with the bag-of-features image representation model combined with the Support Vector Machine classification. The novel method gives a better classification accuracy, and the time of the training and testing process is significantly shorter.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Artificial Intelligence and Soft Computing Research
ISSN
2083-2567
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
13
Strana od-do
57-69
Kód UT WoS článku
000502574500005
EID výsledku v databázi Scopus
2-s2.0-85077117526