On Modifications Towards Improvement of the Exploitation Phase for SOMA Algorithm with Clustering-aided Migration and Adaptive Perturbation Vector Control
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F21%3A63539918" target="_blank" >RIV/70883521:28140/21:63539918 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9659916" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9659916</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SSCI50451.2021.9659916" target="_blank" >10.1109/SSCI50451.2021.9659916</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Modifications Towards Improvement of the Exploitation Phase for SOMA Algorithm with Clustering-aided Migration and Adaptive Perturbation Vector Control
Popis výsledku v původním jazyce
This paper represents the next step in the development of the recently proposed single objective metaheuristic algorithm - Self-Organizing Migrating Algorithm with CLustering-aided migration and adaptive Perturbation vector control (SOMA-CLP). The CEC 2021 single objective bound-constrained optimization benchmark testbed was used for the performance evaluation of the modifications of the algorithm. The presented modifications were invoked by the results of CEC 2021 competition, where the SOMA-CLP ranked 7th out of 9 competing algorithms. This paper introduces three modifications of population organization process focusing on one particular phase of the SOMA-CLP algorithm aimed at exploitation. All results were compared and tested for statistical significance against the original variant using the Friedman rank test. The algorithm modification and analysis of the results presented here can be inspiring for other researchers working on the development and modifications of evolutionary computing techniques.
Název v anglickém jazyce
On Modifications Towards Improvement of the Exploitation Phase for SOMA Algorithm with Clustering-aided Migration and Adaptive Perturbation Vector Control
Popis výsledku anglicky
This paper represents the next step in the development of the recently proposed single objective metaheuristic algorithm - Self-Organizing Migrating Algorithm with CLustering-aided migration and adaptive Perturbation vector control (SOMA-CLP). The CEC 2021 single objective bound-constrained optimization benchmark testbed was used for the performance evaluation of the modifications of the algorithm. The presented modifications were invoked by the results of CEC 2021 competition, where the SOMA-CLP ranked 7th out of 9 competing algorithms. This paper introduces three modifications of population organization process focusing on one particular phase of the SOMA-CLP algorithm aimed at exploitation. All results were compared and tested for statistical significance against the original variant using the Friedman rank test. The algorithm modification and analysis of the results presented here can be inspiring for other researchers working on the development and modifications of evolutionary computing techniques.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021 - Proceedings
ISBN
978-172819048-8
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1-8
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
Piscataway, New Jersey
Místo konání akce
Orlando
Datum konání akce
5. 12. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—