Novelty Search in Particle Swarm Optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F21%3A63544778" target="_blank" >RIV/70883521:28140/21:63544778 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9660131" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9660131</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SSCI50451.2021.9660131" target="_blank" >10.1109/SSCI50451.2021.9660131</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Novelty Search in Particle Swarm Optimization
Popis výsledku v původním jazyce
This paper presents a novel approach to implementing the Novelty search technique (introduced by Kenneth O. Stanley) into the Particle Swarm optimization algorithm (PSO). PSO is well-known for its impaired ability to operate in multidimensional spaces due to its inclination towards premature convergence and possible stagnation. This presented research aims to try various implementations of Novelty Search that could remove this inability and enhance the PSO algorithm. In total, we present five different modifications. The CEC 2020 single objective bound-constrained optimization benchmark testbed was used to evaluate the different Novelty Search-based modifications of the algorithm. All results were compared and tested for statistical significance against the original variant of PSO using the Friedman rank test. This work aims to increase understanding of implementing new approaches for population dynamics control, which are not driven purely by a gradient, and inspire other researchers working with different evolutionary computation methods.
Název v anglickém jazyce
Novelty Search in Particle Swarm Optimization
Popis výsledku anglicky
This paper presents a novel approach to implementing the Novelty search technique (introduced by Kenneth O. Stanley) into the Particle Swarm optimization algorithm (PSO). PSO is well-known for its impaired ability to operate in multidimensional spaces due to its inclination towards premature convergence and possible stagnation. This presented research aims to try various implementations of Novelty Search that could remove this inability and enhance the PSO algorithm. In total, we present five different modifications. The CEC 2020 single objective bound-constrained optimization benchmark testbed was used to evaluate the different Novelty Search-based modifications of the algorithm. All results were compared and tested for statistical significance against the original variant of PSO using the Friedman rank test. This work aims to increase understanding of implementing new approaches for population dynamics control, which are not driven purely by a gradient, and inspire other researchers working with different evolutionary computation methods.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021 - Proceedings
ISBN
978-172819048-8
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
—
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
Piscataway, New Jersey
Místo konání akce
Orlando
Datum konání akce
5. 12. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—