EEG-based lie detection using ERP P300 in response to known and unknown faces: An overview
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F22%3A63557458" target="_blank" >RIV/70883521:28140/22:63557458 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10017818" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10017818</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CSCC55931.2022.00011" target="_blank" >10.1109/CSCC55931.2022.00011</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
EEG-based lie detection using ERP P300 in response to known and unknown faces: An overview
Popis výsledku v původním jazyce
Concealed information detection is nowadays an essential part of security. Conventional lie detectors are expensive, time-consuming, and their accuracy depends on the subject. Many researchers have focused on investigating concealed information for lie detection using electroencephalography (EEG) to recognize a lie better. This work aimed to provide an overview of scientific studies on EEGbased lie detection in the context of ERP P300 during the presentation of known and unknown faces published in the last five years (2017-2022). To the best of our knowledge, there is no recent available review of the most used methods for EEG data analysis in this field. For that reason, this article was created containing the current most used methods for feature extraction and classification, protocols, and accuracy of individual approaches.
Název v anglickém jazyce
EEG-based lie detection using ERP P300 in response to known and unknown faces: An overview
Popis výsledku anglicky
Concealed information detection is nowadays an essential part of security. Conventional lie detectors are expensive, time-consuming, and their accuracy depends on the subject. Many researchers have focused on investigating concealed information for lie detection using electroencephalography (EEG) to recognize a lie better. This work aimed to provide an overview of scientific studies on EEGbased lie detection in the context of ERP P300 during the presentation of known and unknown faces published in the last five years (2017-2022). To the best of our knowledge, there is no recent available review of the most used methods for EEG data analysis in this field. For that reason, this article was created containing the current most used methods for feature extraction and classification, protocols, and accuracy of individual approaches.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 26th International Conference on Circuits, Systems, Communications and Computers (CSCC)
ISBN
978-1-66548-186-1
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
11-15
Název nakladatele
IEEE Computer Society Conference Publishing Services (CPS)
Místo vydání
Washington, DC
Místo konání akce
Chania
Datum konání akce
19. 7. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—