Software cost estimation using neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63572978" target="_blank" >RIV/70883521:28140/23:63572978 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-35311-6_77" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-35311-6_77</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-35311-6_77" target="_blank" >10.1007/978-3-031-35311-6_77</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Software cost estimation using neural networks
Popis výsledku v původním jazyce
Software Cost Estimation (SCE) is one of the most vital parts when starting a new software engineering project; it helps with allocating resources, managing risks, making informed decisions, and stands in correlation with the success or the failure of a project. Because Software Cost Estimation (SCE) is prone to human bias, solutions started being researched with the aid of Artificial Intelligence (AI) and Machine Learning (ML). This paper will investigate the importance of Software Cost Estimation (SCE). Further, the existing taxonomies and methodologies regarding using neural networks with Software Cost estimation will be compared (COCOMO, GEHO-ANN, OLCE, and -ANN-NEAT). This will be done using evaluation metrics such as RMSE, MMRE, PRED, MAE, etc. After, further research is proposed on why using Deep Reinforcement Learning (DRL) could be very beneficial for developing Software Cost Prediction Models. This technique combines Deep Learning (DL) and Machine Learning (ML) and can solve complex tasks with many variables and a rapidly developing environment. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Název v anglickém jazyce
Software cost estimation using neural networks
Popis výsledku anglicky
Software Cost Estimation (SCE) is one of the most vital parts when starting a new software engineering project; it helps with allocating resources, managing risks, making informed decisions, and stands in correlation with the success or the failure of a project. Because Software Cost Estimation (SCE) is prone to human bias, solutions started being researched with the aid of Artificial Intelligence (AI) and Machine Learning (ML). This paper will investigate the importance of Software Cost Estimation (SCE). Further, the existing taxonomies and methodologies regarding using neural networks with Software Cost estimation will be compared (COCOMO, GEHO-ANN, OLCE, and -ANN-NEAT). This will be done using evaluation metrics such as RMSE, MMRE, PRED, MAE, etc. After, further research is proposed on why using Deep Reinforcement Learning (DRL) could be very beneficial for developing Software Cost Prediction Models. This technique combines Deep Learning (DL) and Machine Learning (ML) and can solve complex tasks with many variables and a rapidly developing environment. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Networks and Systems, Volume 722 LNNS
ISBN
978-3-031-35310-9
ISSN
—
e-ISSN
—
Počet stran výsledku
17
Strana od-do
831-847
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
Berlín
Místo konání akce
Virtual, Online
Datum konání akce
3. 4. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—