Robot automation testing of software using genetic algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63574378" target="_blank" >RIV/70883521:28140/23:63574378 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10253052" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10253052</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICECCME57830.2023.10253052" target="_blank" >10.1109/ICECCME57830.2023.10253052</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robot automation testing of software using genetic algorithm
Popis výsledku v původním jazyce
The demand for excellent software has significantly increased in recent years, bringing the importance of testing-related challenges into the limelight. When generating test data for software testing, the test data must be able to unearth potential software defects, while the test adequacy criterion guarantees the quality of test cases. However, optimizing test data during software testing can improve software reliability. Recently, population-based metaheuristic search techniques (e.g., evolutionary testing) have been utilized in software testing. In this study, we propose and implement a method that utilizes a genetic algorithm to optimize test data for robot testing. Due to its advantages over traditional testing methods, several businesses have recently started using robot-automated testing systems for various applications. We implement a Robot Framework (R.F.) where we receive the data generated by a genetic algorithm. Furthermore, this generated data then acts as a request body for R.F. to test the fitness values and use the generated data as our necessary data sets.
Název v anglickém jazyce
Robot automation testing of software using genetic algorithm
Popis výsledku anglicky
The demand for excellent software has significantly increased in recent years, bringing the importance of testing-related challenges into the limelight. When generating test data for software testing, the test data must be able to unearth potential software defects, while the test adequacy criterion guarantees the quality of test cases. However, optimizing test data during software testing can improve software reliability. Recently, population-based metaheuristic search techniques (e.g., evolutionary testing) have been utilized in software testing. In this study, we propose and implement a method that utilizes a genetic algorithm to optimize test data for robot testing. Due to its advantages over traditional testing methods, several businesses have recently started using robot-automated testing systems for various applications. We implement a Robot Framework (R.F.) where we receive the data generated by a genetic algorithm. Furthermore, this generated data then acts as a request body for R.F. to test the fitness values and use the generated data as our necessary data sets.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME 2023
ISBN
979-8-3503-2298-9
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
—
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
Piscataway, New Jersey
Místo konání akce
Tenerife
Datum konání akce
19. 7. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—