Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Enhancing a hierarchical evolutionary strategy using the nearest-better clustering

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F24%3A63580358" target="_blank" >RIV/70883521:28140/24:63580358 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-63759-9_43" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-63759-9_43</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-63759-9_43" target="_blank" >10.1007/978-3-031-63759-9_43</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Enhancing a hierarchical evolutionary strategy using the nearest-better clustering

  • Popis výsledku v původním jazyce

    A straightforward way of solving global optimization problems is to find all local optima of the objective function. Therefore, the ability of detecting multiple local optima is a key feature of a practically usable global optimization method. One of such methods is a multi-population evolutionary strategy called the Hierarchic Memetic Strategy (HMS). Although HMS has already proven its global optimization capabilities there is an area for improvement. In this paper we show such an enhancement resulting from the application of the Nearest-Better Clustering. Results of experiments consisting both of curated benchmarks and a real-world inverse problem show that on average the performance is indeed improved compared to the baseline HMS and remains on par with state-of-the-art evolutionary global optimization methods.

  • Název v anglickém jazyce

    Enhancing a hierarchical evolutionary strategy using the nearest-better clustering

  • Popis výsledku anglicky

    A straightforward way of solving global optimization problems is to find all local optima of the objective function. Therefore, the ability of detecting multiple local optima is a key feature of a practically usable global optimization method. One of such methods is a multi-population evolutionary strategy called the Hierarchic Memetic Strategy (HMS). Although HMS has already proven its global optimization capabilities there is an area for improvement. In this paper we show such an enhancement resulting from the application of the Nearest-Better Clustering. Results of experiments consisting both of curated benchmarks and a real-world inverse problem show that on average the performance is indeed improved compared to the baseline HMS and remains on par with state-of-the-art evolutionary global optimization methods.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GF21-45465L" target="_blank" >GF21-45465L: Metaheuristicky založená parametrická optimalizace modelů a řídicích systémů s dopravním zpožděním</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Computational Science, ICCS 2024, pt III

  • ISBN

    978-3-031-63758-2

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    15

  • Strana od-do

    423-437

  • Název nakladatele

    Springer International Publishing AG

  • Místo vydání

    Basel

  • Místo konání akce

    Malaga

  • Datum konání akce

    2. 7. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    001279325500043