Evaluating mean squared error as a fitness function in SOMA for software effort estimation: Insights from the NASA dataset
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F24%3A63588058" target="_blank" >RIV/70883521:28140/24:63588058 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-031-70300-3_30" target="_blank" >http://dx.doi.org/10.1007/978-3-031-70300-3_30</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-70300-3_30" target="_blank" >10.1007/978-3-031-70300-3_30</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluating mean squared error as a fitness function in SOMA for software effort estimation: Insights from the NASA dataset
Popis výsledku v původním jazyce
Software effort estimation plays a pivotal role in software development. The Constructive Cost Model (COCOMO) is one of the most well-known algorithmic models for estimating software effort. However, the precision of these estimates is susceptible to input constants, potentially resulting in inaccuracies. To address this challenge, this research employs the Self-Organizing Migration Algorithm (SOMA), a metaheuristic algorithm, to optimize input constants of the basic COCOMO. This study uses the NASA18 dataset to evaluate the proposed experiment's performance against the original COCOMO. Evaluation criteria such as MMRE, PRED(0.25), MAE, and MSE, with MSE serving as a fitness function, were employed to validate results. Comparative analysis indicates that optimized COCOMO estimates exhibit improved prediction accuracy. Building on these promising findings, future research will extend testing more deeply with other datasets and involve investigation of the intermediate COCOMO and COCOMO II.
Název v anglickém jazyce
Evaluating mean squared error as a fitness function in SOMA for software effort estimation: Insights from the NASA dataset
Popis výsledku anglicky
Software effort estimation plays a pivotal role in software development. The Constructive Cost Model (COCOMO) is one of the most well-known algorithmic models for estimating software effort. However, the precision of these estimates is susceptible to input constants, potentially resulting in inaccuracies. To address this challenge, this research employs the Self-Organizing Migration Algorithm (SOMA), a metaheuristic algorithm, to optimize input constants of the basic COCOMO. This study uses the NASA18 dataset to evaluate the proposed experiment's performance against the original COCOMO. Evaluation criteria such as MMRE, PRED(0.25), MAE, and MSE, with MSE serving as a fitness function, were employed to validate results. Comparative analysis indicates that optimized COCOMO estimates exhibit improved prediction accuracy. Building on these promising findings, future research will extend testing more deeply with other datasets and involve investigation of the intermediate COCOMO and COCOMO II.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Networks and Systems
ISBN
978-3-031-70299-0
ISSN
2367-3370
e-ISSN
2367-3389
Počet stran výsledku
13
Strana od-do
416-428
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
Berlín
Místo konání akce
Virtual, Online
Datum konání akce
25. 4. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001413910400030