Predicting urinary creatinine excretion and its usefulness to identify incomplete 24 h urine collections
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F75010330%3A_____%2F12%3A00009724" target="_blank" >RIV/75010330:_____/12:00009724 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1017/S0007114511006295" target="_blank" >http://dx.doi.org/10.1017/S0007114511006295</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0007114511006295" target="_blank" >10.1017/S0007114511006295</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predicting urinary creatinine excretion and its usefulness to identify incomplete 24 h urine collections
Popis výsledku v původním jazyce
Studies using 24 h urine collections need to incorporate ways to validate the completeness of the urine samples. Models to predict urinary creatinine excretion (UCE) have been developed for this purpose; however, information on their usefulness to identify incomplete urine collections is limited. We aimed to develop a model for predicting UCE and to assess the performance of a creatinine index using para-aminobenzoic acid (PABA) as a reference. Data were taken from the European Food Consumption Validation study comprising two nonconsecutive 24 h urine collections from 600 subjects in five European countries. Data from one collection were used to build a multiple linear regression model to predict UCE, and data from the other collection were used for performance testing of a creatinine index-based strategy to identify incomplete collections. Multiple linear regression (n 458) of UCE showed a significant positive association for body weight (beta = 0.07), the interaction term sex x weigh
Název v anglickém jazyce
Predicting urinary creatinine excretion and its usefulness to identify incomplete 24 h urine collections
Popis výsledku anglicky
Studies using 24 h urine collections need to incorporate ways to validate the completeness of the urine samples. Models to predict urinary creatinine excretion (UCE) have been developed for this purpose; however, information on their usefulness to identify incomplete urine collections is limited. We aimed to develop a model for predicting UCE and to assess the performance of a creatinine index using para-aminobenzoic acid (PABA) as a reference. Data were taken from the European Food Consumption Validation study comprising two nonconsecutive 24 h urine collections from 600 subjects in five European countries. Data from one collection were used to build a multiple linear regression model to predict UCE, and data from the other collection were used for performance testing of a creatinine index-based strategy to identify incomplete collections. Multiple linear regression (n 458) of UCE showed a significant positive association for body weight (beta = 0.07), the interaction term sex x weigh
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
FB - Endokrinologie, diabetologie, metabolismus, výživa
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
British journal of nutrition
ISSN
0007-1145
e-ISSN
—
Svazek periodika
108
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
1118-1125
Kód UT WoS článku
000308583400020
EID výsledku v databázi Scopus
—