Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The Regularization by Constant Functions of Lagrangians Linear in First Derivatives in Field Theory

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F75081431%3A_____%2F17%3A00001198" target="_blank" >RIV/75081431:_____/17:00001198 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The Regularization by Constant Functions of Lagrangians Linear in First Derivatives in Field Theory

  • Popis výsledku v původním jazyce

    In this paper we study case of the Lagrangians affine in first derivatives in first order field theory (for example Dirac field Lagrangian is of this type). By the regularization procedure we mean the process how to find appropriate Lepagean equivalent for given Lagrangian (in the sense of the geometric meaning of the regularity). The theory is illustrated od an example in dimension 4. The relations to multisymplectic forms are discussed.

  • Název v anglickém jazyce

    The Regularization by Constant Functions of Lagrangians Linear in First Derivatives in Field Theory

  • Popis výsledku anglicky

    In this paper we study case of the Lagrangians affine in first derivatives in first order field theory (for example Dirac field Lagrangian is of this type). By the regularization procedure we mean the process how to find appropriate Lepagean equivalent for given Lagrangian (in the sense of the geometric meaning of the regularity). The theory is illustrated od an example in dimension 4. The relations to multisymplectic forms are discussed.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    16th Conference on applied mathematics, Aplimat 2017, Proceedings

  • ISBN

    9788022746502

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    1453-1458

  • Název nakladatele

    Vydavateľstvo Spektrum STU Bratislava

  • Místo vydání

    Bratislava

  • Místo konání akce

    Bratislava

  • Datum konání akce

    31. 1. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku