Mapping forest aboveground biomass using airborne hyperspectral and LiDAR data in the mountainous conditions of Central Europe
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F17%3A00473954" target="_blank" >RIV/86652079:_____/17:00473954 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.ecoleng.2016.12.004" target="_blank" >http://dx.doi.org/10.1016/j.ecoleng.2016.12.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ecoleng.2016.12.004" target="_blank" >10.1016/j.ecoleng.2016.12.004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mapping forest aboveground biomass using airborne hyperspectral and LiDAR data in the mountainous conditions of Central Europe
Popis výsledku v původním jazyce
The study presents three methods for estimation of forest aboveground biomass (AGB) at tree and plot levels using different categories of airborne data. The first method estimates AGB from high spatial resolution hyperspectral (HS) data. The second method estimates AGB from airborne laser scanning data. The third method explores the synergy between hyperspectral and LiDAR data to estimate AGB. The results are compared with AGB estimated from field measurements. The results demonstrate that, 1) The biomass estimation from the HS data showed a good correlation with field biomass values for spruce, beech and mixture of these species at tree and plot levels, but also the highest uncertainties in comparison with the other two methods, 2) The biomass estimation from the LiDAR data had a strong correlation with field biomass values for spruce for tree level and a good correlation for spruce, beech and mixture of these species for plot level, 3) The biomass estimation from fused HS and LiDAR data showed the best results for tree and plot levels for the study sites. This study expands on previous research assessing the applicability of HS, LiDAR and fused datasets for AGB assessment. It proves the efficiency of using fused HS and LiDAR data and suggests the use of HS-based methods for biomass assessment when laser scanning data are not available.
Název v anglickém jazyce
Mapping forest aboveground biomass using airborne hyperspectral and LiDAR data in the mountainous conditions of Central Europe
Popis výsledku anglicky
The study presents three methods for estimation of forest aboveground biomass (AGB) at tree and plot levels using different categories of airborne data. The first method estimates AGB from high spatial resolution hyperspectral (HS) data. The second method estimates AGB from airborne laser scanning data. The third method explores the synergy between hyperspectral and LiDAR data to estimate AGB. The results are compared with AGB estimated from field measurements. The results demonstrate that, 1) The biomass estimation from the HS data showed a good correlation with field biomass values for spruce, beech and mixture of these species at tree and plot levels, but also the highest uncertainties in comparison with the other two methods, 2) The biomass estimation from the LiDAR data had a strong correlation with field biomass values for spruce for tree level and a good correlation for spruce, beech and mixture of these species for plot level, 3) The biomass estimation from fused HS and LiDAR data showed the best results for tree and plot levels for the study sites. This study expands on previous research assessing the applicability of HS, LiDAR and fused datasets for AGB assessment. It proves the efficiency of using fused HS and LiDAR data and suggests the use of HS-based methods for biomass assessment when laser scanning data are not available.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ecological Engineering
ISSN
0925-8574
e-ISSN
—
Svazek periodika
100
Číslo periodika v rámci svazku
Mar
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
219-230
Kód UT WoS článku
000394062600023
EID výsledku v databázi Scopus
2-s2.0-85007048805