Prototyping a Generic Algorithm for Crop Parameter Retrieval across the Season Using Radiative Transfer Model Inversion and Sentinel-2 Satellite Observations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F21%3A00546326" target="_blank" >RIV/86652079:_____/21:00546326 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/21:10433265
Výsledek na webu
<a href="https://www.mdpi.com/2072-4292/13/18/3659" target="_blank" >https://www.mdpi.com/2072-4292/13/18/3659</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/rs13183659" target="_blank" >10.3390/rs13183659</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Prototyping a Generic Algorithm for Crop Parameter Retrieval across the Season Using Radiative Transfer Model Inversion and Sentinel-2 Satellite Observations
Popis výsledku v původním jazyce
In this study, Sentinel-2 data were used for the retrieval of three key biophysical parameters of crops: leaf area index (LAI), leaf chlorophyll content (LCC), and leaf water content (LWC) for dominant crop types in the Czech Republic, including winter wheat (Triticum aestivum), spring barley (Hordeum vulgare), winter rapeseed (Brassica napus subsp. napus), alfalfa (Medicago sativa), sugar beet (Beta vulgaris), and corn (Zea mays subsp. Mays) in different stages of crop development. Artificial neural networks were applied in combination with an approach using look-up tables that is based on PROSAIL simulations to retrieve the biophysical properties tailored for each crop type. Crop-specific PROSAIL model optimization and validation were based upon a large dataset of in situ measurements collected in 2017 and 2018 in lowland of Central Bohemia region. For LCC and LAI, respectively, low relative root mean square error (rRMSE, 25%, 37%) was achieved. Additionally, a relatively strong correlation with in situ measurements (r = 0.80) was obtained for LAI. On the contrary, the results of the LWC parameter retrieval proved to be unsatisfactory. We have developed a generic tool for biophysical monitoring of agricultural crops based on the interpretation of Sentinel-2 satellite data by inversion of the radiation transfer model. The resulting crop condition maps can serve as precision agriculture inputs for selective fertilizer and irrigation application as well as for yield potential assessment.
Název v anglickém jazyce
Prototyping a Generic Algorithm for Crop Parameter Retrieval across the Season Using Radiative Transfer Model Inversion and Sentinel-2 Satellite Observations
Popis výsledku anglicky
In this study, Sentinel-2 data were used for the retrieval of three key biophysical parameters of crops: leaf area index (LAI), leaf chlorophyll content (LCC), and leaf water content (LWC) for dominant crop types in the Czech Republic, including winter wheat (Triticum aestivum), spring barley (Hordeum vulgare), winter rapeseed (Brassica napus subsp. napus), alfalfa (Medicago sativa), sugar beet (Beta vulgaris), and corn (Zea mays subsp. Mays) in different stages of crop development. Artificial neural networks were applied in combination with an approach using look-up tables that is based on PROSAIL simulations to retrieve the biophysical properties tailored for each crop type. Crop-specific PROSAIL model optimization and validation were based upon a large dataset of in situ measurements collected in 2017 and 2018 in lowland of Central Bohemia region. For LCC and LAI, respectively, low relative root mean square error (rRMSE, 25%, 37%) was achieved. Additionally, a relatively strong correlation with in situ measurements (r = 0.80) was obtained for LAI. On the contrary, the results of the LWC parameter retrieval proved to be unsatisfactory. We have developed a generic tool for biophysical monitoring of agricultural crops based on the interpretation of Sentinel-2 satellite data by inversion of the radiation transfer model. The resulting crop condition maps can serve as precision agriculture inputs for selective fertilizer and irrigation application as well as for yield potential assessment.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20705 - Remote sensing
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Remote Sensing
ISSN
2072-4292
e-ISSN
2072-4292
Svazek periodika
13
Číslo periodika v rámci svazku
18
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
29
Strana od-do
3659
Kód UT WoS článku
000702053900001
EID výsledku v databázi Scopus
2-s2.0-85115106837