Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Influences of vegetation, model, and data parameters on forest aboveground biomass assessment using an area-based approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F22%3A00560448" target="_blank" >RIV/86652079:_____/22:00560448 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216224:14310/22:00126347

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1574954122002047?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1574954122002047?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ecoinf.2022.101754" target="_blank" >10.1016/j.ecoinf.2022.101754</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Influences of vegetation, model, and data parameters on forest aboveground biomass assessment using an area-based approach

  • Popis výsledku v původním jazyce

    Although aboveground biomass (AGB) estimation using area-based approaches (ABAs) and its application to forestry have been actively researched through three decades, this technology has been little operationalized in the Central European forest sector. That means specific recommendations are needed in order to apply ABA for forest biomass modelling in this region. The present study was directed to filling such gaps while examining the effect of input ABA parameters on AGB model quality in conditions of mixed mountainous forests in Central Europe. Specific objectives were to assess whether the strength of the AGB model can be impacted by 1) canopy conditions (leaf-on and leaf-off), 2) airborne LiDAR point density (2.5, 5.0, 7.5, 10.0 points/m2), 3) field methods to estimate AGB (with regeneration components or without), and 4) machine learning methods (AdaBoost, Random decision forest, multilayer neural network, and Bayesian ridge regression). The results show that canopy conditions and airborne LiDAR point densities did not affect the strength of the AGB model, but that model's strength was affected by the vegetation regeneration component in the field biomass reference and by the machine learning method tested for modelling. AdaBoost and random decision forest were the most successful methods. To evaluate the quality of an AGB model it is recommended to combine several individual evaluation functions into the model score. The study highlights several recommendations to follow when estimating AGB from ALS using an ABA in Central European forests.

  • Název v anglickém jazyce

    Influences of vegetation, model, and data parameters on forest aboveground biomass assessment using an area-based approach

  • Popis výsledku anglicky

    Although aboveground biomass (AGB) estimation using area-based approaches (ABAs) and its application to forestry have been actively researched through three decades, this technology has been little operationalized in the Central European forest sector. That means specific recommendations are needed in order to apply ABA for forest biomass modelling in this region. The present study was directed to filling such gaps while examining the effect of input ABA parameters on AGB model quality in conditions of mixed mountainous forests in Central Europe. Specific objectives were to assess whether the strength of the AGB model can be impacted by 1) canopy conditions (leaf-on and leaf-off), 2) airborne LiDAR point density (2.5, 5.0, 7.5, 10.0 points/m2), 3) field methods to estimate AGB (with regeneration components or without), and 4) machine learning methods (AdaBoost, Random decision forest, multilayer neural network, and Bayesian ridge regression). The results show that canopy conditions and airborne LiDAR point densities did not affect the strength of the AGB model, but that model's strength was affected by the vegetation regeneration component in the field biomass reference and by the machine learning method tested for modelling. AdaBoost and random decision forest were the most successful methods. To evaluate the quality of an AGB model it is recommended to combine several individual evaluation functions into the model score. The study highlights several recommendations to follow when estimating AGB from ALS using an ABA in Central European forests.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20701 - Environmental and geological engineering, geotechnics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/QK1910150" target="_blank" >QK1910150: Průběžné hodnocení nadzemní biomasy dřevinného patra lesních ekosystémů pomocí pokročilých metod dálkového průzkumu Země</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Ecological Informatics

  • ISSN

    1574-9541

  • e-ISSN

    1878-0512

  • Svazek periodika

    70

  • Číslo periodika v rámci svazku

    SEP

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    12

  • Strana od-do

    101754

  • Kód UT WoS článku

    000841244600005

  • EID výsledku v databázi Scopus

    2-s2.0-85135419574