Influences of vegetation, model, and data parameters on forest aboveground biomass assessment using an area-based approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F22%3A00560448" target="_blank" >RIV/86652079:_____/22:00560448 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/22:00126347
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1574954122002047?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1574954122002047?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ecoinf.2022.101754" target="_blank" >10.1016/j.ecoinf.2022.101754</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Influences of vegetation, model, and data parameters on forest aboveground biomass assessment using an area-based approach
Popis výsledku v původním jazyce
Although aboveground biomass (AGB) estimation using area-based approaches (ABAs) and its application to forestry have been actively researched through three decades, this technology has been little operationalized in the Central European forest sector. That means specific recommendations are needed in order to apply ABA for forest biomass modelling in this region. The present study was directed to filling such gaps while examining the effect of input ABA parameters on AGB model quality in conditions of mixed mountainous forests in Central Europe. Specific objectives were to assess whether the strength of the AGB model can be impacted by 1) canopy conditions (leaf-on and leaf-off), 2) airborne LiDAR point density (2.5, 5.0, 7.5, 10.0 points/m2), 3) field methods to estimate AGB (with regeneration components or without), and 4) machine learning methods (AdaBoost, Random decision forest, multilayer neural network, and Bayesian ridge regression). The results show that canopy conditions and airborne LiDAR point densities did not affect the strength of the AGB model, but that model's strength was affected by the vegetation regeneration component in the field biomass reference and by the machine learning method tested for modelling. AdaBoost and random decision forest were the most successful methods. To evaluate the quality of an AGB model it is recommended to combine several individual evaluation functions into the model score. The study highlights several recommendations to follow when estimating AGB from ALS using an ABA in Central European forests.
Název v anglickém jazyce
Influences of vegetation, model, and data parameters on forest aboveground biomass assessment using an area-based approach
Popis výsledku anglicky
Although aboveground biomass (AGB) estimation using area-based approaches (ABAs) and its application to forestry have been actively researched through three decades, this technology has been little operationalized in the Central European forest sector. That means specific recommendations are needed in order to apply ABA for forest biomass modelling in this region. The present study was directed to filling such gaps while examining the effect of input ABA parameters on AGB model quality in conditions of mixed mountainous forests in Central Europe. Specific objectives were to assess whether the strength of the AGB model can be impacted by 1) canopy conditions (leaf-on and leaf-off), 2) airborne LiDAR point density (2.5, 5.0, 7.5, 10.0 points/m2), 3) field methods to estimate AGB (with regeneration components or without), and 4) machine learning methods (AdaBoost, Random decision forest, multilayer neural network, and Bayesian ridge regression). The results show that canopy conditions and airborne LiDAR point densities did not affect the strength of the AGB model, but that model's strength was affected by the vegetation regeneration component in the field biomass reference and by the machine learning method tested for modelling. AdaBoost and random decision forest were the most successful methods. To evaluate the quality of an AGB model it is recommended to combine several individual evaluation functions into the model score. The study highlights several recommendations to follow when estimating AGB from ALS using an ABA in Central European forests.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20701 - Environmental and geological engineering, geotechnics
Návaznosti výsledku
Projekt
<a href="/cs/project/QK1910150" target="_blank" >QK1910150: Průběžné hodnocení nadzemní biomasy dřevinného patra lesních ekosystémů pomocí pokročilých metod dálkového průzkumu Země</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ecological Informatics
ISSN
1574-9541
e-ISSN
1878-0512
Svazek periodika
70
Číslo periodika v rámci svazku
SEP
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
101754
Kód UT WoS článku
000841244600005
EID výsledku v databázi Scopus
2-s2.0-85135419574