Large deviations and phase transitions in spectral linear statistics of Gaussian random matrices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2FCZ______%3A_____%2F24%3AN0000098" target="_blank" >RIV/CZ______:_____/24:N0000098 - isvavai.cz</a>
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1751-8121/ad1e1a" target="_blank" >https://iopscience.iop.org/article/10.1088/1751-8121/ad1e1a</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8121/ad1e1a" target="_blank" >10.1088/1751-8121/ad1e1a</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Large deviations and phase transitions in spectral linear statistics of Gaussian random matrices
Popis výsledku v původním jazyce
We evaluate, in the large-N limit, the complete probability distribution P(A,m) of the values A of the sum & sum;(N)(i=1)|lambda(i)|(m), where lambda(i) (i=1,2,& mldr;,N) are the eigenvalues of a Gaussian random matrix, and m is a positive real number. Combining the Coulomb gas method with numerical simulations using a matrix variant of the Wang-Landau algorithm, we found that, in the limit of N ->infinity, the rate function of P(A,m) exhibits phase transitions of different characters. The phase diagram of the system on the (A,m) plane is surprisingly rich, as it includes three regions: (i) a region with a single-interval support of the optimal spectrum of eigenvalues, (ii) a region emerging for m<2 where the optimal spectrum splits into two separate intervals, and (iii) a region emerging for m>2 where the maximum or minimum eigenvalue ``evaporates" from the rest of eigenvalues and dominates the statistics of A. The phase transition between regions (i) and (iii) is of second order. Analytical arguments and numerical simulations strongly suggest that the phase transition between regions (i) and (ii) is of (in general) fractional order p=1+1/|m-1|, where 02 occur at the ground state of the Coulomb gas which corresponds to the Wigner's semicircular distribution.
Název v anglickém jazyce
Large deviations and phase transitions in spectral linear statistics of Gaussian random matrices
Popis výsledku anglicky
We evaluate, in the large-N limit, the complete probability distribution P(A,m) of the values A of the sum & sum;(N)(i=1)|lambda(i)|(m), where lambda(i) (i=1,2,& mldr;,N) are the eigenvalues of a Gaussian random matrix, and m is a positive real number. Combining the Coulomb gas method with numerical simulations using a matrix variant of the Wang-Landau algorithm, we found that, in the limit of N ->infinity, the rate function of P(A,m) exhibits phase transitions of different characters. The phase diagram of the system on the (A,m) plane is surprisingly rich, as it includes three regions: (i) a region with a single-interval support of the optimal spectrum of eigenvalues, (ii) a region emerging for m<2 where the optimal spectrum splits into two separate intervals, and (iii) a region emerging for m>2 where the maximum or minimum eigenvalue ``evaporates" from the rest of eigenvalues and dominates the statistics of A. The phase transition between regions (i) and (iii) is of second order. Analytical arguments and numerical simulations strongly suggest that the phase transition between regions (i) and (ii) is of (in general) fractional order p=1+1/|m-1|, where 02 occur at the ground state of the Coulomb gas which corresponds to the Wigner's semicircular distribution.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physics A: Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
1751-8121
Svazek periodika
57
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
31
Strana od-do
065001 (1-31)
Kód UT WoS článku
001154489000001
EID výsledku v databázi Scopus
2-s2.0-85184029025