Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Obohacené kategorie a jejich aplikace

Veřejná podpora

  • Poskytovatel

    Grantová agentura České republiky

  • Program

    Standardní projekty

  • Veřejná soutěž

    SGA0202200004

  • Hlavní účastníci

    Masarykova univerzita / Přírodovědecká fakulta

  • Druh soutěže

    VS - Veřejná soutěž

  • Číslo smlouvy

    22-02964S

Alternativní jazyk

  • Název projektu anglicky

    Enriched categories and their applications

  • Anotace anglicky

    The project focuses on applications of enriched category theory to homotopical and higher-dimensional structures, to algebra, theoretical computer science and functional analysis. Using enriched homotopy theory and the framework of infinity-cosmoi, we will develop notions of limit theory appropriate to capturing higher categories with structure. We will study enrichment over several specific base categories, including metric spaces, complete metric spaces and Banach spaces. Using these, we expect new insights and results about important structures appearing in theoretical computer science and functional analysis. An important role will be played by enriched monad theory. We will also study enriched accessible categories and their relationship to enriched homotopy theory and continuous model theory. By passing from classical enrichment to enrichment over a skew monoidal base, we aim to solve the open problem of understanding semi-strict higher-dimensional categories.

Vědní obory

  • Kategorie VaV

    ZV - Základní výzkum

  • OECD FORD - hlavní obor

    10101 - Pure mathematics

  • OECD FORD - vedlejší obor

  • OECD FORD - další vedlejší obor

  • CEP - odpovídající obory <br>(dle <a href="http://www.vyzkum.cz/storage/att/E6EF7938F0E854BAE520AC119FB22E8D/Prevodnik_oboru_Frascati.pdf">převodníku</a>)

    BA - Obecná matematika

Termíny řešení

  • Zahájení řešení

    1. 1. 2022

  • Ukončení řešení

    31. 12. 2024

  • Poslední stav řešení

    K - Končící víceletý projekt

  • Poslední uvolnění podpory

    2. 3. 2023

Dodání dat do CEP

  • Důvěrnost údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

  • Systémové označení dodávky dat

    CEP24-GA0-GA-R

  • Datum dodání záznamu

    19. 2. 2024

Finance

  • Celkové uznané náklady

    8 394 tis. Kč

  • Výše podpory ze státního rozpočtu

    8 394 tis. Kč

  • Ostatní veřejné zdroje financování

    0 tis. Kč

  • Neveřejné tuz. a zahr. zdroje finan.

    0 tis. Kč