Decision making on vestibular schwannoma treatment: predictions based on machine-learning analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064203%3A_____%2F21%3A10431688" target="_blank" >RIV/00064203:_____/21:10431688 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378041:_____/21:00551108 RIV/00216208:11110/21:10431688 RIV/61384399:31160/21:00056876 RIV/68407700:21460/21:00353364 a 3 dalších
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=SVKi0lhr._" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=SVKi0lhr._</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-021-97819-x" target="_blank" >10.1038/s41598-021-97819-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Decision making on vestibular schwannoma treatment: predictions based on machine-learning analysis
Popis výsledku v původním jazyce
Decision making on the treatment of vestibular schwannoma (VS) is mainly based on the symptoms, tumor size, patient's preference, and experience of the medical team. Here we provide objective tools to support the decision process by answering two questions: can a single checkup predict the need of active treatment?, and which attributes of VS development are important in decision making on active treatment? Using a machine-learning analysis of medical records of 93 patients, the objectives were addressed using two classification tasks: a time-independent case-based reasoning (CBR), where each medical record was treated as independent, and a personalized dynamic analysis (PDA), during which we analyzed the individual development of each patient's state in time. Using the CBR method we found that Koos classification of tumor size, speech reception threshold, and pure tone audiometry, collectively predict the need for active treatment with approximately 90% accuracy; in the PDA task, only the increase of Koos classification and VS size were sufficient. Our results indicate that VS treatment may be reliably predicted using only a small set of basic parameters, even without the knowledge of individual development, which may help to simplify VS treatment strategies, reduce the number of examinations, and increase cause effectiveness.
Název v anglickém jazyce
Decision making on vestibular schwannoma treatment: predictions based on machine-learning analysis
Popis výsledku anglicky
Decision making on the treatment of vestibular schwannoma (VS) is mainly based on the symptoms, tumor size, patient's preference, and experience of the medical team. Here we provide objective tools to support the decision process by answering two questions: can a single checkup predict the need of active treatment?, and which attributes of VS development are important in decision making on active treatment? Using a machine-learning analysis of medical records of 93 patients, the objectives were addressed using two classification tasks: a time-independent case-based reasoning (CBR), where each medical record was treated as independent, and a personalized dynamic analysis (PDA), during which we analyzed the individual development of each patient's state in time. Using the CBR method we found that Koos classification of tumor size, speech reception threshold, and pure tone audiometry, collectively predict the need for active treatment with approximately 90% accuracy; in the PDA task, only the increase of Koos classification and VS size were sufficient. Our results indicate that VS treatment may be reliably predicted using only a small set of basic parameters, even without the knowledge of individual development, which may help to simplify VS treatment strategies, reduce the number of examinations, and increase cause effectiveness.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30206 - Otorhinolaryngology
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-08241S" target="_blank" >GA19-08241S: Změny ve sluchové kůře u pacientů s jednostrannou hluchotou</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific Reports
ISSN
2045-2322
e-ISSN
2045-2322
Svazek periodika
11
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
18376
Kód UT WoS článku
000696347000073
EID výsledku v databázi Scopus
2-s2.0-85115245768