Novel Paradigm of Subdural Cortical Stimulation Does Not Cause Thermal Damage in Brain Tissue: A Simulation-Based Study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11130%2F21%3A10419164" target="_blank" >RIV/00216208:11130/21:10419164 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/21:00344456 RIV/68407700:21460/21:00344456 RIV/00064203:_____/21:10419164
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=lvpofmM4Nl" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=lvpofmM4Nl</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TNSRE.2020.3043823" target="_blank" >10.1109/TNSRE.2020.3043823</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Novel Paradigm of Subdural Cortical Stimulation Does Not Cause Thermal Damage in Brain Tissue: A Simulation-Based Study
Popis výsledku v původním jazyce
The thermal effect of a novel effective electrical stimulation mapping (ESM) technique using an Ojemann's stimulation electrode in open craniotomy areas causes a nondestructive local increase in temperature. Another type of stimulating electrode is a subdural strip, routinely used in intraoperative electrocorticography (ECoG), which applies ESM in a covered subdural area over the motor cortex. ECoG electrode geometry produces a different electrical field, causing a different Joule heat distribution in tissue, one that is impossible to measure in subdural space. Therefore, the previous safety control study of the novel ESM technique needed to be extended to include an assessment of the thermal effect of ECoG strip electrodes. We adapted a previously well-validated numerical model and performed coupled complex electro-thermal transient simulations for short-time (28.4 ms) high-frequency (500 Hz) and hyperintense (peak 100 mA) ESM paradigm. The risk of heat-induced cellular damage was assessed by applying the Arrhenius equation integral on the computed time-dependent spatial distribution of temperature in the brain tissue during ESM stimulation and during the cooldown period. The results showed increases in temperature in the proximity around ECoG electrode discs in a safe range without destructive effects. As opposed to open craniotomy, subdural space is not cooled by the air; hence a higher - but still safe - induced temperature was observed. The presented simulation agrees with the previously published histopathological examination of the stimulated brain tissue, and confirms the safety of the novel ESM technique when applied using ECoG strip electrodes.
Název v anglickém jazyce
Novel Paradigm of Subdural Cortical Stimulation Does Not Cause Thermal Damage in Brain Tissue: A Simulation-Based Study
Popis výsledku anglicky
The thermal effect of a novel effective electrical stimulation mapping (ESM) technique using an Ojemann's stimulation electrode in open craniotomy areas causes a nondestructive local increase in temperature. Another type of stimulating electrode is a subdural strip, routinely used in intraoperative electrocorticography (ECoG), which applies ESM in a covered subdural area over the motor cortex. ECoG electrode geometry produces a different electrical field, causing a different Joule heat distribution in tissue, one that is impossible to measure in subdural space. Therefore, the previous safety control study of the novel ESM technique needed to be extended to include an assessment of the thermal effect of ECoG strip electrodes. We adapted a previously well-validated numerical model and performed coupled complex electro-thermal transient simulations for short-time (28.4 ms) high-frequency (500 Hz) and hyperintense (peak 100 mA) ESM paradigm. The risk of heat-induced cellular damage was assessed by applying the Arrhenius equation integral on the computed time-dependent spatial distribution of temperature in the brain tissue during ESM stimulation and during the cooldown period. The results showed increases in temperature in the proximity around ECoG electrode discs in a safe range without destructive effects. As opposed to open craniotomy, subdural space is not cooled by the air; hence a higher - but still safe - induced temperature was observed. The presented simulation agrees with the previously published histopathological examination of the stimulated brain tissue, and confirms the safety of the novel ESM technique when applied using ECoG strip electrodes.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Neural Systems and Rehabilitation Engineering
ISSN
1534-4320
e-ISSN
—
Svazek periodika
29
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
230-238
Kód UT WoS článku
000626331500003
EID výsledku v databázi Scopus
2-s2.0-85097956747