Intraoperative thermography in safety control of the electrical stimulation mapping
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00314048" target="_blank" >RIV/68407700:21230/17:00314048 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11130/17:10373953 RIV/00064203:_____/17:10373953
Výsledek na webu
<a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7985872" target="_blank" >http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7985872</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/MeMeA.2017.7985872" target="_blank" >10.1109/MeMeA.2017.7985872</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Intraoperative thermography in safety control of the electrical stimulation mapping
Popis výsledku v původním jazyce
The cortical Electric Stimulation Mapping (ESM) procedure is used as a standard approach to localize and continuously monitor function of the eloquent cortex and corticospinal tract during neurosurgical intervention. However, eliciting motor responses using standard ESM paradigm is frequently difficult to young children. We have thus developed and tested a novel EMS protocol, which uses intense, high frequency and short stimulation pulses. However, the intense stimulation peak-peak current (up to 100 mA) possess the potential risk of tissue damage.The thermographic measurement was performed in four selected patients in vivo using the high-resolution thermographic camera during resective epilepsy surgery to verify the safety of the novel EMS paradigm. The EMS paradigm was systematically tested for pulse currents gradually increased from 10 to 100 mA. A moving thermographic picture was stabilized and emissivity was corrected for each pixel to reach the correct temperature interpretation. The results show a local temperature increase in the brain tissue close to the stimulation electrode during the ESM with current intensity above 40 mA. The 100 mA current caused the maximal temperature increase +0.4 °C. This value added to patient basal temperature is far under safety level 39 °C. Although the temperature increase observed around the stimulating electrode during our ESM paradigm is very low, we are aware that the borderline between electrode and cortex could not be reliably measured. Estimation of the electrical current density and the temperature distribution must be modeled using 3D numerical simulations and compared with the thermographic measurement in future work.
Název v anglickém jazyce
Intraoperative thermography in safety control of the electrical stimulation mapping
Popis výsledku anglicky
The cortical Electric Stimulation Mapping (ESM) procedure is used as a standard approach to localize and continuously monitor function of the eloquent cortex and corticospinal tract during neurosurgical intervention. However, eliciting motor responses using standard ESM paradigm is frequently difficult to young children. We have thus developed and tested a novel EMS protocol, which uses intense, high frequency and short stimulation pulses. However, the intense stimulation peak-peak current (up to 100 mA) possess the potential risk of tissue damage.The thermographic measurement was performed in four selected patients in vivo using the high-resolution thermographic camera during resective epilepsy surgery to verify the safety of the novel EMS paradigm. The EMS paradigm was systematically tested for pulse currents gradually increased from 10 to 100 mA. A moving thermographic picture was stabilized and emissivity was corrected for each pixel to reach the correct temperature interpretation. The results show a local temperature increase in the brain tissue close to the stimulation electrode during the ESM with current intensity above 40 mA. The 100 mA current caused the maximal temperature increase +0.4 °C. This value added to patient basal temperature is far under safety level 39 °C. Although the temperature increase observed around the stimulating electrode during our ESM paradigm is very low, we are aware that the borderline between electrode and cortex could not be reliably measured. Estimation of the electrical current density and the temperature distribution must be modeled using 3D numerical simulations and compared with the thermographic measurement in future work.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA)
ISBN
978-1-5090-2983-9
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
183-188
Název nakladatele
IEEE Service Center
Místo vydání
Piscataway
Místo konání akce
Rochester, Minesota
Datum konání akce
7. 5. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—