The tree property
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11210%2F17%3A10362113" target="_blank" >RIV/00216208:11210/17:10362113 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The tree property
Popis výsledku v původním jazyce
We will review some of the more recent results we have obtained jointly with Sy-David Friedman regarding the relationship between the tree property and the continuum function. We will discuss the following key areas: (a). The possibility of obtaining a strong limit cardinal $kappa$ with $2^kappa$ (arbitrarily) large and with the tree property at $kappa^{++}$. The possibility of having $kappa = aleph_omega$ in the previous result. (b). The possibility of obtaining the results in (a) from more optimal large-cardinal assumptions (supercompacts vs. strong cardinals of low degree). (c). The possibility of obtaining a model where the continuum function below a strong limit $aleph_omega$ is as arbitrary as possible with the tree property holding at (some/all) cardinals $aleph_n$, $1 < n < omega$.
Název v anglickém jazyce
The tree property
Popis výsledku anglicky
We will review some of the more recent results we have obtained jointly with Sy-David Friedman regarding the relationship between the tree property and the continuum function. We will discuss the following key areas: (a). The possibility of obtaining a strong limit cardinal $kappa$ with $2^kappa$ (arbitrarily) large and with the tree property at $kappa^{++}$. The possibility of having $kappa = aleph_omega$ in the previous result. (b). The possibility of obtaining the results in (a) from more optimal large-cardinal assumptions (supercompacts vs. strong cardinals of low degree). (c). The possibility of obtaining a model where the continuum function below a strong limit $aleph_omega$ is as arbitrary as possible with the tree property holding at (some/all) cardinals $aleph_n$, $1 < n < omega$.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů