Copula based factorization in Bayesian multivariate infinite mixture models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11230%2F14%3A10227277" target="_blank" >RIV/00216208:11230/14:10227277 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jmva.2014.02.011" target="_blank" >http://dx.doi.org/10.1016/j.jmva.2014.02.011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmva.2014.02.011" target="_blank" >10.1016/j.jmva.2014.02.011</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Copula based factorization in Bayesian multivariate infinite mixture models
Popis výsledku v původním jazyce
Bayesian nonparametric models based on infinite mixtures of density kernels have been recently gaining in popularity due to their flexibility and feasibility of implementation even in complicated modeling scenarios. However, these models have been rarelyapplied in more than one dimension. Indeed, implementation in the multivariate case is inherently difficult due to the rapidly increasing number of parameters needed to characterize the joint dependence structure accurately. In this paper, we propose afactorization scheme of multivariate dependence structures based on the copula modeling framework, whereby each marginal dimension in the mixing parameter space is modeled separately and the marginals are then linked by a nonparametric random copula function. Specifically, we consider nonparametric univariate Gaussian mixtures for the marginals and a multivariate random Bernstein polynomial copula for the link function, under the Dirichlet process prior. We show that in a multivariate se
Název v anglickém jazyce
Copula based factorization in Bayesian multivariate infinite mixture models
Popis výsledku anglicky
Bayesian nonparametric models based on infinite mixtures of density kernels have been recently gaining in popularity due to their flexibility and feasibility of implementation even in complicated modeling scenarios. However, these models have been rarelyapplied in more than one dimension. Indeed, implementation in the multivariate case is inherently difficult due to the rapidly increasing number of parameters needed to characterize the joint dependence structure accurately. In this paper, we propose afactorization scheme of multivariate dependence structures based on the copula modeling framework, whereby each marginal dimension in the mixing parameter space is modeled separately and the marginals are then linked by a nonparametric random copula function. Specifically, we consider nonparametric univariate Gaussian mixtures for the marginals and a multivariate random Bernstein polynomial copula for the link function, under the Dirichlet process prior. We show that in a multivariate se
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
AH - Ekonomie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Multivariate Analysis
ISSN
0047-259X
e-ISSN
—
Svazek periodika
127
Číslo periodika v rámci svazku
MAY 2014
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
200-213
Kód UT WoS článku
000334819700015
EID výsledku v databázi Scopus
—