Stránkování se spojeními: FIFO se vrací
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F07%3A00005085" target="_blank" >RIV/00216208:11320/07:00005085 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Paging with connections: FIFO strikes again
Popis výsledku v původním jazyce
We continue the study of the integrated document and connection caching problem. We focus on the case where the connection cache has a size of one and show that this problem is not equivalent to standard paging, even if there are only two locations for the pages, by giving the first lower bound that is strictly higher than k for this problem. We then give the first upper bound below the trivial value of 2k for this problem. Our upper bound is k+4l where l is the number of locations where the requested pages in a phase come from. This algorithm groups pages by location. In each phase, it evicts all pages from one location before moving on to the next location. In contrast, we show that the lru algorithm is not better than 2k-competitive.
Název v anglickém jazyce
Paging with connections: FIFO strikes again
Popis výsledku anglicky
We continue the study of the integrated document and connection caching problem. We focus on the case where the connection cache has a size of one and show that this problem is not equivalent to standard paging, even if there are only two locations for the pages, by giving the first lower bound that is strictly higher than k for this problem. We then give the first upper bound below the trivial value of 2k for this problem. Our upper bound is k+4l where l is the number of locations where the requested pages in a phase come from. This algorithm groups pages by location. In each phase, it evicts all pages from one location before moving on to the next location. In contrast, we show that the lru algorithm is not better than 2k-competitive.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2007
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Svazek periodika
377
Číslo periodika v rámci svazku
1-3
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
10
Strana od-do
55-64
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—