Vylepšení implementace linearní diskriminační analýzy pro 'high dimension/small sample size problem'.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F07%3A00005248" target="_blank" >RIV/00216208:11320/07:00005248 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985807:_____/07:00086648 RIV/00216208:11320/07:00101529
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving implementation of linear discriminant analysis for the high dimension/small sample size problem
Popis výsledku v původním jazyce
Classification based on Fisher's linear discriminant analysis (FLDA) is challenging when the number of variables largely exceeds the number of given samples. The original FLDA needs to be carefully modified and with high dimensionality implementation issues like reduction of storage costs are of crucial importance. Methods are reviewed for the high dimension/small sample size problem and the one closest, in some sense, to the classical regular approach is chosen. The implementation of this method with regard to computational and storage costs and numerical stability is improved. This is achieved through combining a variety of known and new implementation strategies. Experiments demonstrate the superiority, with respect to both overall costs and classification rates, of the resulting algorithm compared with other methods.
Název v anglickém jazyce
Improving implementation of linear discriminant analysis for the high dimension/small sample size problem
Popis výsledku anglicky
Classification based on Fisher's linear discriminant analysis (FLDA) is challenging when the number of variables largely exceeds the number of given samples. The original FLDA needs to be carefully modified and with high dimensionality implementation issues like reduction of storage costs are of crucial importance. Methods are reviewed for the high dimension/small sample size problem and the one closest, in some sense, to the classical regular approach is chosen. The implementation of this method with regard to computational and storage costs and numerical stability is improved. This is achieved through combining a variety of known and new implementation strategies. Experiments demonstrate the superiority, with respect to both overall costs and classification rates, of the resulting algorithm compared with other methods.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2007
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Statistics and Data Analysis
ISSN
0167-9473
e-ISSN
—
Svazek periodika
52
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
423-437
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—