Finding vertex-surjective graph homomorphisms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10125721" target="_blank" >RIV/00216208:11320/12:10125721 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00236-012-0164-0" target="_blank" >http://dx.doi.org/10.1007/s00236-012-0164-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00236-012-0164-0" target="_blank" >10.1007/s00236-012-0164-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Finding vertex-surjective graph homomorphisms
Popis výsledku v původním jazyce
The Surjective Homomorphism problem is to test whether a given graph G called the guest graph allows a vertex-surjective homomorphism to some other given graph H called the host graph. The bijective and injective homomorphism problems can be formulated in terms of spanning subgraphs and subgraphs, and as such their computational complexity has been extensively studied. What about the surjective variant? Because this problem is NP-complete in general, we restrict the guest and the host graph to belong tograph classes ${cal G}$ and ${cal H}$, respectively. We determine to what extent a certain choice of ${cal G}$ and ${cal H}$ influences its computational complexity. We observe that the problem is polynomial-time solvable if ${cal H}$ is the classof paths, whereas it is NP-complete if ${cal G}$ is the class of paths. Moreover, we show that the problem is even NP-complete on many other elementary graph classes, namely linear forests, unions of complete graphs, cographs, proper int
Název v anglickém jazyce
Finding vertex-surjective graph homomorphisms
Popis výsledku anglicky
The Surjective Homomorphism problem is to test whether a given graph G called the guest graph allows a vertex-surjective homomorphism to some other given graph H called the host graph. The bijective and injective homomorphism problems can be formulated in terms of spanning subgraphs and subgraphs, and as such their computational complexity has been extensively studied. What about the surjective variant? Because this problem is NP-complete in general, we restrict the guest and the host graph to belong tograph classes ${cal G}$ and ${cal H}$, respectively. We determine to what extent a certain choice of ${cal G}$ and ${cal H}$ influences its computational complexity. We observe that the problem is polynomial-time solvable if ${cal H}$ is the classof paths, whereas it is NP-complete if ${cal G}$ is the class of paths. Moreover, we show that the problem is even NP-complete on many other elementary graph classes, namely linear forests, unions of complete graphs, cographs, proper int
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Informatica
ISSN
0001-5903
e-ISSN
—
Svazek periodika
49
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
14
Strana od-do
381-394
Kód UT WoS článku
000308722500002
EID výsledku v databázi Scopus
—