Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Generic Frechet Differentiability on Asplund Spaces via A.E. Strict Differentiability on Many Lines

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10127167" target="_blank" >RIV/00216208:11320/12:10127167 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Generic Frechet Differentiability on Asplund Spaces via A.E. Strict Differentiability on Many Lines

  • Popis výsledku v původním jazyce

    We prove that a locally Lipschitz function on an open subset G of an Asplund space X, whose restrictions to "many lines" are essentially smooth (i.e., almost everywhere strictly differentiable), is generically Frechet differentiable on X. In this way weobtain new proofs of known Frechet differentiability properties of approximately convex functions, Lipschitz regular functions, saddle (or biconvex) Lipschitz functions, and essentially smooth functions (in the sense of Borwein and Moors), and also somenew differentiability results (e.g., for partially DC functions). We show that classes of functions S-e(g)(G) and R-e(g)(G) (defined via linear essential smoothness) are respectively larger than classes S-e(G) (of essentially smooth functions) and R-e(G)studied by Borwein and Moors, and have also nice properties. In particular, we prove that members of S-e(g)(G) are uniquely determined by their Clarke subdifferentials. We also show the inclusion S-e(G) subset of R-e(G) for Borwein-Moors

  • Název v anglickém jazyce

    Generic Frechet Differentiability on Asplund Spaces via A.E. Strict Differentiability on Many Lines

  • Popis výsledku anglicky

    We prove that a locally Lipschitz function on an open subset G of an Asplund space X, whose restrictions to "many lines" are essentially smooth (i.e., almost everywhere strictly differentiable), is generically Frechet differentiable on X. In this way weobtain new proofs of known Frechet differentiability properties of approximately convex functions, Lipschitz regular functions, saddle (or biconvex) Lipschitz functions, and essentially smooth functions (in the sense of Borwein and Moors), and also somenew differentiability results (e.g., for partially DC functions). We show that classes of functions S-e(g)(G) and R-e(g)(G) (defined via linear essential smoothness) are respectively larger than classes S-e(G) (of essentially smooth functions) and R-e(G)studied by Borwein and Moors, and have also nice properties. In particular, we prove that members of S-e(g)(G) are uniquely determined by their Clarke subdifferentials. We also show the inclusion S-e(G) subset of R-e(G) for Borwein-Moors

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA201%2F09%2F0067" target="_blank" >GA201/09/0067: Teorie reálných funkcí a deskriptivní teorie množin II</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2012

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Convex Analysis

  • ISSN

    0944-6532

  • e-ISSN

  • Svazek periodika

    19

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    26

  • Strana od-do

    23-48

  • Kód UT WoS článku

    000301551300002

  • EID výsledku v databázi Scopus