Kaplansky classes, finite character and aleph(1)-projectivity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10128138" target="_blank" >RIV/00216208:11320/12:10128138 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1515/FORM.2011.101" target="_blank" >http://dx.doi.org/10.1515/FORM.2011.101</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/FORM.2011.101" target="_blank" >10.1515/FORM.2011.101</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Kaplansky classes, finite character and aleph(1)-projectivity
Popis výsledku v původním jazyce
Kaplansky classes emerged in the context of Enochs' solution of the Flat Cover Conjecture. Their connection to abstract model theory goes back to Baldwin et al.: a class C of roots of Ext is a Kaplansky class closed under direct limits if and only if thepair (C, {=) is an abstract elementary class (AEC) in the sense of Shelah. We prove that this AEC has finite character in case C = C-perpendicular to' for a class C' of pure-injective modules. In particular, all AECs of roots of Ext over any right noetherian right hereditary ring R have finite character (but the case of general rings remains open). If (C, {=) is an AEC of roots of Ext, then C is known to be a covering class. However, Kaplansky classes need not even be precovering in general: We prove that the class D of all aleph(1)-projective modules (which is equal to the class of all flat Mittag-Leffler modules) is a Kaplansky class for any ring R, but it fails to be precovering in case R is not right perfect, the class (perpendicul
Název v anglickém jazyce
Kaplansky classes, finite character and aleph(1)-projectivity
Popis výsledku anglicky
Kaplansky classes emerged in the context of Enochs' solution of the Flat Cover Conjecture. Their connection to abstract model theory goes back to Baldwin et al.: a class C of roots of Ext is a Kaplansky class closed under direct limits if and only if thepair (C, {=) is an abstract elementary class (AEC) in the sense of Shelah. We prove that this AEC has finite character in case C = C-perpendicular to' for a class C' of pure-injective modules. In particular, all AECs of roots of Ext over any right noetherian right hereditary ring R have finite character (but the case of general rings remains open). If (C, {=) is an AEC of roots of Ext, then C is known to be a covering class. However, Kaplansky classes need not even be precovering in general: We prove that the class D of all aleph(1)-projective modules (which is equal to the class of all flat Mittag-Leffler modules) is a Kaplansky class for any ring R, but it fails to be precovering in case R is not right perfect, the class (perpendicul
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Forum Mathematicum
ISSN
0933-7741
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
19
Strana od-do
1091-1109
Kód UT WoS článku
000309161800008
EID výsledku v databázi Scopus
—