Characterization of Minkowski measurability in terms of surface area
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10140149" target="_blank" >RIV/00216208:11320/13:10140149 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jmaa.2012.10.059" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2012.10.059</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2012.10.059" target="_blank" >10.1016/j.jmaa.2012.10.059</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Characterization of Minkowski measurability in terms of surface area
Popis výsledku v původním jazyce
The r-parallel set to a set A in Euclidean space consists of all points with distance at most r from A. Recently, the asymptotic behaviour of volume and surface area of the parallel sets as r tends to 0 has been studied and some general results regardingtheir relations have been established. Here we complete the picture regarding the resulting notions of Minkowski content and S-content. In particular, we show that a set is Minkowski measurable if and only if it is S-measurable, i.e. if and only if itsS-content is positive and finite, and that positivity and finiteness of the lower and upper Minkowski contents imply the same for the S-contents and vice versa. The results are formulated in the more general setting of Kneser functions. Furthermore, therelations between Minkowski and S-contents are studied for more general gauge functions. The results are applied to simplify the proof of the Modified Weyl-Berry conjecture in dimension one.
Název v anglickém jazyce
Characterization of Minkowski measurability in terms of surface area
Popis výsledku anglicky
The r-parallel set to a set A in Euclidean space consists of all points with distance at most r from A. Recently, the asymptotic behaviour of volume and surface area of the parallel sets as r tends to 0 has been studied and some general results regardingtheir relations have been established. Here we complete the picture regarding the resulting notions of Minkowski content and S-content. In particular, we show that a set is Minkowski measurable if and only if it is S-measurable, i.e. if and only if itsS-content is positive and finite, and that positivity and finiteness of the lower and upper Minkowski contents imply the same for the S-contents and vice versa. The results are formulated in the more general setting of Kneser functions. Furthermore, therelations between Minkowski and S-contents are studied for more general gauge functions. The results are applied to simplify the proof of the Modified Weyl-Berry conjecture in dimension one.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GCP201%2F10%2FJ039" target="_blank" >GCP201/10/J039: Míry křivosti a integrální geometrie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Svazek periodika
400
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
120-132
Kód UT WoS článku
000314672700012
EID výsledku v databázi Scopus
—