Interpreting Web Shop User's Behavioral Patterns as Fictitious Explicit Rating for Preference Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10277916" target="_blank" >RIV/00216208:11320/14:10277916 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/chapter/10.1007%2F978-3-319-09870-8_19" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-319-09870-8_19</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-09870-8_19" target="_blank" >10.1007/978-3-319-09870-8_19</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Interpreting Web Shop User's Behavioral Patterns as Fictitious Explicit Rating for Preference Learning
Popis výsledku v původním jazyce
We consider applications of user preference rule learning in marketing. We chose rules because of human-understandability. We chose fuzzy logic because it enables to order items for recommendation. In this paper we introduce a rule based system equivalent to the Fagin-Lotem-Naor preference system. We show a multi-user version, introduce induction and compare it to several methods for learning user preference. The methods are based, first, on interpreting e-shop user's behavioral patterns collected by scripts as fictitious explicit rating. After this we use this (fictitious) explicit rating for content based preference learning. Our main motivation is on recommending for small or medium-sized e-commerce portals. Due to high competition, users of these portals are not too loyal and e.g. refuse to register or provide any/enough explicit feedback. Furthermore, products such as tours, cars or furniture have very low average consumption rate preventing us from tracking unregistered user betw
Název v anglickém jazyce
Interpreting Web Shop User's Behavioral Patterns as Fictitious Explicit Rating for Preference Learning
Popis výsledku anglicky
We consider applications of user preference rule learning in marketing. We chose rules because of human-understandability. We chose fuzzy logic because it enables to order items for recommendation. In this paper we introduce a rule based system equivalent to the Fagin-Lotem-Naor preference system. We show a multi-user version, introduce induction and compare it to several methods for learning user preference. The methods are based, first, on interpreting e-shop user's behavioral patterns collected by scripts as fictitious explicit rating. After this we use this (fictitious) explicit rating for content based preference learning. Our main motivation is on recommending for small or medium-sized e-commerce portals. Due to high competition, users of these portals are not too loyal and e.g. refuse to register or provide any/enough explicit feedback. Furthermore, products such as tours, cars or furniture have very low average consumption rate preventing us from tracking unregistered user betw
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Rules on the Web. From Theory to Applications
ISBN
978-3-319-09869-2
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
15
Strana od-do
251-265
Název nakladatele
Springer
Místo vydání
Berlin
Místo konání akce
Prague, Czech Republic
Datum konání akce
18. 8. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—