Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Minimal Risk Portfolios under SSD efficiency constraints

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10282967" target="_blank" >RIV/00216208:11320/14:10282967 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.mme2014.upol.cz/conference-proceedings" target="_blank" >http://www.mme2014.upol.cz/conference-proceedings</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Minimal Risk Portfolios under SSD efficiency constraints

  • Popis výsledku v původním jazyce

    This paper deals with new types of optimization problems when minimizing a risk of a portfolio under a condition on portfolio mean return and over portfolios which are classified as efficient with respect to second-order stochastic dominance (SSD) criterion. These problems can be seen as generalizations of classical mean-risk models where a risk measure is minimized under condition on portfolio mean return. The crucial condition on the second order stochastic dominance efficiency is expressed in terms of existence of "optimal" utility function which obeys SSD rules. It means that new problems find portfolios having minimal particular risk measure (variance, Value at Risk, conditional Value at Risk), with at least minimal required mean return and beingthe optimal solution of maximization expected utility problems for at least one non-decreasing and concave utility function. This study reformulates these new problems in linear, nonlinear, mixed-integer programs. Moreover, using US stock

  • Název v anglickém jazyce

    Minimal Risk Portfolios under SSD efficiency constraints

  • Popis výsledku anglicky

    This paper deals with new types of optimization problems when minimizing a risk of a portfolio under a condition on portfolio mean return and over portfolios which are classified as efficient with respect to second-order stochastic dominance (SSD) criterion. These problems can be seen as generalizations of classical mean-risk models where a risk measure is minimized under condition on portfolio mean return. The crucial condition on the second order stochastic dominance efficiency is expressed in terms of existence of "optimal" utility function which obeys SSD rules. It means that new problems find portfolios having minimal particular risk measure (variance, Value at Risk, conditional Value at Risk), with at least minimal required mean return and beingthe optimal solution of maximization expected utility problems for at least one non-decreasing and concave utility function. This study reformulates these new problems in linear, nonlinear, mixed-integer programs. Moreover, using US stock

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BB - Aplikovaná statistika, operační výzkum

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GAP402%2F12%2F0558" target="_blank" >GAP402/12/0558: Eficience a řízení rizika při rozhodování</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Conference Proceedings of the 32nd International Conference Mathematical Methods in Economics MME 2014

  • ISBN

    978-80-244-4209-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    465-470

  • Název nakladatele

    Palacký University

  • Místo vydání

    Omlomouc

  • Místo konání akce

    Olomouc

  • Datum konání akce

    10. 9. 2014

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku