A coding problem for pairs of subsets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10286297" target="_blank" >RIV/00216208:11320/14:10286297 - isvavai.cz</a>
Výsledek na webu
<a href="http://arxiv.org/pdf/1403.3847v2.pdf" target="_blank" >http://arxiv.org/pdf/1403.3847v2.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-88-7642-525-7_4" target="_blank" >10.1007/978-88-7642-525-7_4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A coding problem for pairs of subsets
Popis výsledku v původním jazyce
Let X be an n-element finite set and k a positive an integer less than or equal to n/2. Suppose that {A1,A2} and {B1,B2} are pairs of disjoint k-element subsets of X (that is, |A1|=|A2|=|B1|=|B2|=k, the intersection of A1 and A2 is empty, and so is the intersection of B1 and B2). Define the distance of these pairs by d({A1,A2},{B1,B2}) to be the min{|A1-B1|+|A2-B2|,|A1-B2|+|A2-B1|}. This is the minimum number of elements of the union of A1and A2 that one has to move to obtain the other pair {B1,B2}. LetC(n,k,d) be the maximum size of a family of pairs of disjoint subsets, such that the distance of any two pairs is at least d. Here we establish a conjecture of Brightwell and Katona concerning an asymptotic formula for C(n,k,d) for k,d are fixed and n approaches infinity. Also, we find the exact value of C(n,k,d) in an infinite number of cases, by using special difference sets of integers. Finally, the questions discussed above are put into a more general context and a number of coding
Název v anglickém jazyce
A coding problem for pairs of subsets
Popis výsledku anglicky
Let X be an n-element finite set and k a positive an integer less than or equal to n/2. Suppose that {A1,A2} and {B1,B2} are pairs of disjoint k-element subsets of X (that is, |A1|=|A2|=|B1|=|B2|=k, the intersection of A1 and A2 is empty, and so is the intersection of B1 and B2). Define the distance of these pairs by d({A1,A2},{B1,B2}) to be the min{|A1-B1|+|A2-B2|,|A1-B2|+|A2-B1|}. This is the minimum number of elements of the union of A1and A2 that one has to move to obtain the other pair {B1,B2}. LetC(n,k,d) be the maximum size of a family of pairs of disjoint subsets, such that the distance of any two pairs is at least d. Here we establish a conjecture of Brightwell and Katona concerning an asymptotic formula for C(n,k,d) for k,d are fixed and n approaches infinity. Also, we find the exact value of C(n,k,d) in an infinite number of cases, by using special difference sets of integers. Finally, the questions discussed above are put into a more general context and a number of coding
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GPP201%2F12%2FP288" target="_blank" >GPP201/12/P288: Reprezentace grafů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Geometry, Structure and Randomness in Combinatorics
ISBN
978-88-7642-524-0
Počet stran výsledku
11
Strana od-do
47-59
Počet stran knihy
160
Název nakladatele
Edizioni della Normale
Místo vydání
Pisa
Kód UT WoS kapitoly
—