Initial Error Growth and Predictability of Chaotic Low-dimensional Atmospheric Model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10292083" target="_blank" >RIV/00216208:11320/14:10292083 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/article/10.1007/s11633-014-0788-3" target="_blank" >http://link.springer.com/article/10.1007/s11633-014-0788-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11633-014-0788-3" target="_blank" >10.1007/s11633-014-0788-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Initial Error Growth and Predictability of Chaotic Low-dimensional Atmospheric Model
Popis výsledku v původním jazyce
The growth of small errors in weather prediction is exponential on average. As an error becomes larger, its growth slows down and then stops with the magnitude of the error saturating at about the average distance between two states chosen randomly. Thispaper studies the error growth in a low-dimensional atmospheric model before, during and after the initial exponential divergence occurs. We test cubic, quartic and logarithmic hypotheses by ensemble prediction method. Furthermore, the quadratic hypothesis suggested by Lorenz in 1969 is compared with the ensemble prediction method. The study shows that a small error growth is best modeled by the quadratic hypothesis. After the error exceeds about a half of the average value of variables, logarithmic approximation becomes superior. It is also shown that the time length of the exponential growth in the model data is a function of the size of small initial error and the largest Lyapunov exponent. We conclude that the size of the error at
Název v anglickém jazyce
Initial Error Growth and Predictability of Chaotic Low-dimensional Atmospheric Model
Popis výsledku anglicky
The growth of small errors in weather prediction is exponential on average. As an error becomes larger, its growth slows down and then stops with the magnitude of the error saturating at about the average distance between two states chosen randomly. Thispaper studies the error growth in a low-dimensional atmospheric model before, during and after the initial exponential divergence occurs. We test cubic, quartic and logarithmic hypotheses by ensemble prediction method. Furthermore, the quadratic hypothesis suggested by Lorenz in 1969 is compared with the ensemble prediction method. The study shows that a small error growth is best modeled by the quadratic hypothesis. After the error exceeds about a half of the average value of variables, logarithmic approximation becomes superior. It is also shown that the time length of the exponential growth in the model data is a function of the size of small initial error and the largest Lyapunov exponent. We conclude that the size of the error at
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Automation and Computing
ISSN
1476-8186
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
9
Strana od-do
256-264
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—