Three-Monotone Interpolation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10312956" target="_blank" >RIV/00216208:11320/15:10312956 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00454-015-9695-9" target="_blank" >http://dx.doi.org/10.1007/s00454-015-9695-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00454-015-9695-9" target="_blank" >10.1007/s00454-015-9695-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Three-Monotone Interpolation
Popis výsledku v původním jazyce
A function is called k-monotone if it is (k-2)-times differentiable and its (k-2)-nd derivative is convex. A planar point set is k-monotone interpolable if it lies on a graph of a k-monotone function. These notions have been studied in analysis, approximation theory, etc. since the 1940s. We show that 3-monotone interpolability is very nonlocal: we exhibit an arbitrarily large finite P for which every proper subset is 3-monotone interpolable but P itself is not. On the other hand, we prove a Ramsey-typeresult: for every n there exists N such that every N-point P with distinct x-coordinates contains an n-point Q such that Q or its vertical mirror reflection are 3-monotone interpolable. The analogs for k-monotone interpolability with k=1 and k=2 are classical theorems of Erdos and Szekeres, while the cases with k at least 4 remain open. We also investigate the computational complexity of deciding 3-monotone interpolability of a given point set. Using a known characterization, this decis
Název v anglickém jazyce
Three-Monotone Interpolation
Popis výsledku anglicky
A function is called k-monotone if it is (k-2)-times differentiable and its (k-2)-nd derivative is convex. A planar point set is k-monotone interpolable if it lies on a graph of a k-monotone function. These notions have been studied in analysis, approximation theory, etc. since the 1940s. We show that 3-monotone interpolability is very nonlocal: we exhibit an arbitrarily large finite P for which every proper subset is 3-monotone interpolable but P itself is not. On the other hand, we prove a Ramsey-typeresult: for every n there exists N such that every N-point P with distinct x-coordinates contains an n-point Q such that Q or its vertical mirror reflection are 3-monotone interpolable. The analogs for k-monotone interpolability with k=1 and k=2 are classical theorems of Erdos and Szekeres, while the cases with k at least 4 remain open. We also investigate the computational complexity of deciding 3-monotone interpolability of a given point set. Using a known characterization, this decis
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete and Computational Geometry
ISSN
0179-5376
e-ISSN
—
Svazek periodika
54
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
3-21
Kód UT WoS článku
000355340300002
EID výsledku v databázi Scopus
2-s2.0-84930573405