Integrated depth for functional data: statistical properties and consistency
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10329863" target="_blank" >RIV/00216208:11320/16:10329863 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1051/ps/2016005" target="_blank" >http://dx.doi.org/10.1051/ps/2016005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/ps/2016005" target="_blank" >10.1051/ps/2016005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Integrated depth for functional data: statistical properties and consistency
Popis výsledku v původním jazyce
Several depths suitable for infinite-dimensional functional data that are available in the literature are of the form of an integral of a finite-dimensional depth function. These functionals are characterized by projecting functions into low-dimensional spaces, taking finite-dimensional depths of the projected quantities, and finally integrating these projected marginal depths over a preset collection of projections. In this paper, a general class of integrated depths for functions is considered. Several depths for functional data proposed in the literature during the last decades are members of this general class. A comprehensive study of its most important theoretical properties, including measurability and consistency, is given. It is shown that many, but not all, properties of the integrated depth are shared with the finite-dimensional depth that constitutes its building block. Some pending measurability issues connected with all integrated depth functionals are resolved, a broad new notion of symmetry for functional data is proposed, and difficulties with respect to consistency results are identified. A general universal consistency result for the sample depth version, and for the generalized median, for integrated depth for functions is derived
Název v anglickém jazyce
Integrated depth for functional data: statistical properties and consistency
Popis výsledku anglicky
Several depths suitable for infinite-dimensional functional data that are available in the literature are of the form of an integral of a finite-dimensional depth function. These functionals are characterized by projecting functions into low-dimensional spaces, taking finite-dimensional depths of the projected quantities, and finally integrating these projected marginal depths over a preset collection of projections. In this paper, a general class of integrated depths for functions is considered. Several depths for functional data proposed in the literature during the last decades are members of this general class. A comprehensive study of its most important theoretical properties, including measurability and consistency, is given. It is shown that many, but not all, properties of the integrated depth are shared with the finite-dimensional depth that constitutes its building block. Some pending measurability issues connected with all integrated depth functionals are resolved, a broad new notion of symmetry for functional data is proposed, and difficulties with respect to consistency results are identified. A general universal consistency result for the sample depth version, and for the generalized median, for integrated depth for functions is derived
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ESAIM - Probability and Statistics
ISSN
1292-8100
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
14.7.2016
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
36
Strana od-do
95-130
Kód UT WoS článku
000390777500006
EID výsledku v databázi Scopus
2-s2.0-84978630466