Tellurium Secondary-Phase Defects in CdZnTe and their Association With the 1.1-eV Deep Trap
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10331249" target="_blank" >RIV/00216208:11320/16:10331249 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/TNS.2016.2598743" target="_blank" >http://dx.doi.org/10.1109/TNS.2016.2598743</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TNS.2016.2598743" target="_blank" >10.1109/TNS.2016.2598743</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tellurium Secondary-Phase Defects in CdZnTe and their Association With the 1.1-eV Deep Trap
Popis výsledku v původním jazyce
Defects located at the EC - 1.1 (eV) level, which are electro-optically active deep traps, generally have been overlooked since their presence cannot be detected except for those in highly resistive CdTe compounds. The origin of this trap is still debated on whether it is from Te vacancies or from dislocations induced by secondary phase defects in Te. We have grown high-resistivity Te-rich CZT ingots to clarify the origin of the 1.1 eV defects and to analyze the defect levels in the CZT samples by current deep level transient spectroscopy (I-DLTS) and photoluminescence (PL). From the analysis, defect levels such as shallow acceptor/donor, A-centers, Cd vacancies and Te antisite appeared to be in both high and low concentrations of Te inclusions, but the level of 1.1-eV defects exhibited dependence on the density of Te inclusion in the CZT samples. We also evaluated the effect of the 1.1-eV deep-level defects on the detector's performance in point view of carrier trapping and de-trapping.
Název v anglickém jazyce
Tellurium Secondary-Phase Defects in CdZnTe and their Association With the 1.1-eV Deep Trap
Popis výsledku anglicky
Defects located at the EC - 1.1 (eV) level, which are electro-optically active deep traps, generally have been overlooked since their presence cannot be detected except for those in highly resistive CdTe compounds. The origin of this trap is still debated on whether it is from Te vacancies or from dislocations induced by secondary phase defects in Te. We have grown high-resistivity Te-rich CZT ingots to clarify the origin of the 1.1 eV defects and to analyze the defect levels in the CZT samples by current deep level transient spectroscopy (I-DLTS) and photoluminescence (PL). From the analysis, defect levels such as shallow acceptor/donor, A-centers, Cd vacancies and Te antisite appeared to be in both high and low concentrations of Te inclusions, but the level of 1.1-eV defects exhibited dependence on the density of Te inclusion in the CZT samples. We also evaluated the effect of the 1.1-eV deep-level defects on the detector's performance in point view of carrier trapping and de-trapping.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BM - Fyzika pevných látek a magnetismus
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Nuclear Science
ISSN
0018-9499
e-ISSN
—
Svazek periodika
63
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
5
Strana od-do
2657-2661
Kód UT WoS článku
000386228400007
EID výsledku v databázi Scopus
2-s2.0-84992117681